Биография Леонардо Пизанский, он же Фибоначчи



Дата29.09.2017
Размер1.34 Mb.
Просмотров38
Скачиваний0
ТипБиография

Введение

Человек стремится к знаниям, пытается изучить Мир, который его окружает. В процессе наблюдений появляются многочисленные вопросы, на которые, соответственно, требуется найти ответы. Человек ищет эти ответы, а находя их, появляются другие вопросы.

Сегодня, в век высоких технологий, изучение ведётся не только на нашей планете Земля, но и за её пределами – во Вселенной. Но это не значит, что на Земле всё изучено, а наоборот, остаётся огромное количество непонятных и необъяснимых явлений. Но есть «ответы», которые дают объяснение сразу нескольким таким явлениям.

  Оказывается, закономерность явлений природы, строение и многообразие живых организмов на нашей планете, всё, что нас окружает, поражая воображение своей гармонией и упорядоченностью, законы мироздания, движение человеческой мысли и достижения науки – всё это можно попытаться объяснить последовательностью Фибоначчи.

Но давайте обо всем по порядку.



Биография

Леонардо Пизанский, он же Фибоначчи.
О жизни Леонардо осталось крайне мало биографических сведений. Что же касается имени Фибоначчи, под которым он вошел в историю математики, то оно закрепилось за ним только в XIX веке.
Леонардо Пизанский никогда не называл себя Фибоначчи; этот псевдоним был дан ему позднее, предположительно Гийомом Либри в 1838 году. Слово Fibonacci — сокращение от двух слов «filius Bonacci», появившихся на обложке «Книги абака»; они могли означать либо «сын Боначчо», либо, если интерпретировать слово Боначчи как фамилию, «сын Боначчи». Согласно третьей версии, само слово Боначчи нужно тоже понимать как прозвище, означавшее «удачливый». Сам он обычно подписывался Боначчи; иногда он использовал также имя Леонардо Биголло — слово bigollo на тосканском наречии значило «странник», а также «бездельник».
Фибоначчи родился в итальянском городе Пиза, предположительно в 1170-е годы (в некоторых источниках стоит 1180 год). Его отец, Гильермо, был торговцем. Тогда Пиза была одним из крупнейших коммерческих средоточий, активно сотрудничавших с исламским Востоком, и отец Фибоначчи энергично торговал в одной из факторий, основанных итальянцами на северном побережье Африки. В 1192 году он был назначен представлять пизанскую торговую колонию в Северной Африке и часто бывал в Беджаи, Алжир. Благодаря этому ему удалось "устроить" своего сына, будущего великого математика Фибоначчи, в одну из арабских школ, где он и смог получить превосходное для того времени математическое образование. Леонардо изучал труды математиков стран мусульманского вероучения (таких как ал-Хорезми и Абу Камил); по арабским переводам он ознакомился также с достижениями античных и индийских математиков.

Позже Фибоначчи посетил Египет, Сирию, Византию, Сицилию.


На основе усвоенных им знаний Фибоначчи написал ряд математических трактатов, представляющих собой выдающееся явление средневековой западноевропейской науки.
В 1200 году Леонардо вернулся в Пизу и принялся за написание своего первого труда «Книги абака». В то время в Европе о позиционной системе счисления и арабских цифрах знали очень немногие. В своей книге Фибоначчи всячески поддерживал индийские приёмы вычисления и методы. По словам историка математики А. П. Юшкевича, «„Книга абака“ резко возвышается над европейской арифметико-алгебраической литературой XII—XIV веков разнообразием и силой методов, богатством задач, доказательностью изложения… Последующие математики широко черпали из неё как задачи, так и приёмы их решения». По первой книге многие поколения европейских математиков изучали индийскую позиционную систему счисления.

Труд Леонардо Фибоначчи «Книга абака» способствовал распространению в Европе позиционной системы счисления, более удобной для вычислений, чем римская нотация; в этой книге были подробно исследованы возможности применения индийских цифр, ранее остававшиеся неясными, и даны примеры решения практических задач, в частности, связанных с торговым делом. Позиционная система приобрела в Европе популярность в эпоху Возрождения.


Книга заинтересовала императора Фридриха II и его придворных, среди которых был астролог Микаель Скотус (Michael Scotus), философ Теодорус Физикус (Theodorus Physicus) и Доминикус Хиспанус (Dominicus Hispanus). Последний предложил, чтобы Леонардо пригласили ко двору в одно из посещений императором Пизы около 1225 года, где ему задавал задачи Иоган Палермский, ещё один придворный философ Фридриха II. Некоторые из этих задач появились в последующих работах Фибоначчи. Благодаря хорошему образованию Леонардо удалось обратить на себя внимание императора Фридриха II во время математических турниров. Впоследствии Леонардо пользовался покровительством императора.
Несколько лет Фибоначчи жил при дворе императора. К этому времени относится его работа «Книга квадратов», написанная в 1225 году. Книга посвящена диофантовым уравнениям второй степени и ставит Фибоначчи в один ряд с такими учёными, развивавшими теорию чисел, как Диофант и Ферма. Единственное упоминание о Фибоначчи после 1228 года относится к 1240 году, когда ему в Пизанской республике была назначена пенсия за заслуги перед городом.
Прижизненных портретов Фибоначчи не сохранилось, а существующие являются современными представлениями о нём. Леонардо Пизанский не оставил практически никаких автобиографических сведений; единственным исключением является второй абзац «Книги абака», где Фибоначчи излагает причины, побудившие его написать книгу:
«Когда отцу моему была назначена должность таможенного чиновника, заведовавшего в Беджайе делами стекавшихся к нему пизанских торговцев, он в отрочестве моём призвал меня к себе и предложил несколько дней учиться счётному искусству, сулившему немало удобств и выгод для моего будущего. Наученный благодаря мастерству учителей основам индийского счёта, я приобрёл большую любовь к этому искусству и заодно узнал, что кое-что об этом предмете известно среди египтян, сирийцев, греков, сицилийцев и провансальцев, развивших свои методы. Позже, во время торговых путешествий по всем этим краям, я посвятил много труда подробному изучению их методов и, кроме того, овладел искусством научного спора. Однако по сравнению с методом индийцев все построения этих людей, включая подход алгорисмиков и учение Пифагора, кажутся почти заблуждениями, а потому я решил, изучив как можно внимательнее индийский метод, изложить его в пятнадцати главах настолько понятно, насколько смогу, с добавлениями от собственного разума и с кое-какими полезными примечаниями из геометрии Евклида, вставленными по ходу сочинения. Дабы пытливый читатель мог изучить индийский счёт наиболее вдумчивым образом, я сопроводил почти каждое утверждение убедительным доказательством; рассчитываю, что латинский народ отныне не будет лишён самых точных сведений об искусстве вычислений. Если же, паче чаяния, я пропустил что-то более или менее важное, а может быть, необходимое, то молю о прощении, ибо нет среди людей никого, кто был бы безгрешен или обладал способностью всё предвидеть.»
Однако точный смысл этого абзаца нельзя считать полностью известным, потому что его текст, как и весь латинский текст книги, дошёл до нас с ошибками, внесёнными переписчиками.



Научная деятельность
Значительную часть усвоенных им знаний он изложил в своей «Книге абака» (Liberabaci, 1202 год; до наших дней сохранилась только дополненная рукопись 1228 года). Эта книга состоит из 15 глав и содержит почти все арифметические и алгебраические сведения того времени, изложенные с исключительной полнотой и глубиной. Первые пять глав книги посвящены арифметике целых чисел на основе десятичной нумерации. В VI и VII главе Леонардо излагает действия над обыкновенными дробями. В VIII—X главах изложены приёмы решения задач коммерческой арифметики, основанные на пропорциях. В XI главе рассмотрены задачи на смешение. В XII главе приводятся задачи на суммирование рядов — арифметической и геометрической прогрессий, ряда квадратов и, впервые в истории математики, возвратного ряда, приводящего к последовательности так называемых чисел Фибоначчи. В XIII главе излагается правило двух ложных положений и ряд других задач, приводимых к линейным уравнениям. В XIV главе Леонардо на числовых примерах разъясняет способы приближённого извлечения квадратного и кубического корней. Наконец, в XV главе собран ряд задач на применение теоремы Пифагора и большое число примеров на квадратные уравнения. Леонардо впервые в Европе использовал отрицательные числа, которые рассматривал как долг. Книга посвящена Микаелю Скотусу.
Другая книга Фибоначчи, «Практика геометрии» (Practicageometriae, 1220 год), состоит из семи частей и содержит разнообразные теоремы с доказательствами, относящиеся к измерительным методам. Наряду с классическими результатами Фибоначчи приводит свои собственные — например, первое доказательство того, что три медианы треугольника пересекаются в одной точке (Архимеду этот факт был известен, но если его доказательство и существовало, до нас оно не дошло). Среди землемерных приёмов, которым посвящён последний раздел книги, — использование определённым образом размеченного квадрата для определения расстояний и высот. Для определения числа π Фибоначчи использует периметры вписанного и описанного 96-угольника, что приводит его к значению

3,1418. Книга была посвящена Доминикусу Хиспанусу. В 1915 году

Р. С. Арчибальд занимался восстановлением утерянной работы Евклида о делении фигур, базируясь на «Практике геометрии» Фибоначчи и французском переводе арабской версии.
В трактате «Цветок» (Flos, 1225 год) Фибоначчи исследовал кубическое уравнение x3+ 2х2+ 10 x = 20 , предложенное ему Иоанном Палермским на математическом состязании при дворе императора Фридриха II. Сам Иоанн Палермский почти наверняка заимствовал это уравнение из трактата Омара Хайяма «О доказательствах задач алгебры», где оно приводится как пример одного из видов в классификации кубических уравнений. Леонардо Пизанский исследовал это уравнение, показав, что его корень не может быть рациональным или же иметь вид одной из квадратичных иррациональностей, встречающихся в X книге Начал Евклида, а затем нашёл приближённое значение корня в шестидесятеричных дробях, равное 1;22,07,42,33,04,40, не указывая, однако, способа своего решения.
«Книга квадратов» (Liberquadratorum, 1225 год) содержит ряд задач на решение неопределённых квадратных уравнений. Фибоначчи работал над поиском чисел, которые, будучи добавленными к квадратному числу, вновь дадут квадратное число. Он отметил, что числа x2+ у2 и x2−у2 не могут быть квадратными одновременно, а также использовал для поиска квадратных чисел формулу x2+ ( 2 x + 1 ) = ( x + 1 )2. В одной из задач книги,

также первоначально предложенной Иоанном Палермским, требовалось найти рациональное квадратное число, которое, будучи увеличено или уменьшено на 5, вновь даёт рациональные квадратные числа.


Среди не дошедших до нас произведений Фибоначчи трактат Diminorguisa по коммерческой арифметике, а также комментарии к книге X «Начал» Евклида.
То, что мы сейчас знаем под названием «числа Фибоначчи», было известно древнеиндийским математикам задолго до того, как ими стали пользоваться в Европе.

Задачи Фибоначчи
Оставаясь верным математическим турнирам, основную роль в своих книгах Фибоначчи отводит задачам, их решениям и комментариям. Задачи на турниры предлагал как сам Фибоначчи, так и его соперник, придворный философ Фридриха II Иоган Палермский. Задачи Фибоначчи, как и их аналоги, продолжали использовать в различных математических учебниках несколько столетий. Их можно встретить в «Сумме арифметики» Пачиоли (1494), в «Приятных и занимательных задачах» Баше де Мизириака (1612), в «Арифметике» Магницкого (1703), в «Алгебре» Эйлера (1768).
После Фибоначчи осталось большое число задач, которые были очень популярны среди математиков и в последующие столетия. Мы с вами рассмотрим задачу о кроликах, в решении которой и используются числа Фибоначчи.
Задача о кроликах
Фибоначчи задал такие условия: существует пара новорожденных кроликов (самец и самка) такой интересной породы, что они регулярно (начиная со второго месяца) производят потомство – всегда одну новую пару кроликов. Тоже, как можно догадаться, самца и самку.

Эти условные кролики помещены в замкнутое пространство и размножаются. Оговаривается также, что ни один кролик не умирает от какой-нибудь загадочной кроличьей болезни.


Надо вычислить, сколько кроликов мы получим через год.

В начале 1 месяца у нас 1 пара кроликов. В конце месяца они спариваются.

Второй месяц – у нас уже 2 пары кроликов (у пара – родители + 1 пара – их потомство).

Третий месяц: Первая пара рождает новую пару, вторая пара спаривается. Итого – 3 пары кроликов.

Четвертый месяц: Первая пара рождает новую пару, вторая пара времени не теряет и тоже рождает новую пару, третья пара пока только спаривается. Итого – 5 пар кроликов.

Число кроликов в n-ый месяц = число пар кроликов из предыдущего месяца + число новорожденных пар (их столько же, сколько пар кроликов было за 2 месяца до настоящего момента). И все это описывается формулой, которую мы уже привели выше: Fn = Fn-1 + Fn-2.


Таким образом, получаем рекуррентную (пояснение о рекурсии – ниже) числовую последовательность. В которой каждое следующее число равно сумме двух предыдущих:

1 + 1 = 2

2 + 1 = 3

3 + 2 = 5

5 + 3 = 8

8 + 5 = 13

13 + 8 = 21

21 + 13 = 34

34 + 21 = 55

55 + 34 = 89

89 + 55 = 144

144 + 89 = 233

233+ 144 = 377 <…>
Продолжать последовательность можно долго: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 <…>. Но поскольку мы задали конкретный срок – год, нас интересует результат, полученный на 12-ом «ходу». Т.е. 13-ый член последовательности: 377.
Ответ в задаче: 377 кроликов будет получено при соблюдении всех заявленных условий.
Итак, Размышляя на эту тему, Фибоначчи выстроил такой ряд чисел:

1,1,2,3,5,8,13,21,34,55,89,144,…

Но как оказалось, эта последовательность обладает рядом замечательных свойств.

Свойства последовательности Фибоначчи 

 1. Отношение каждого числа к последующему более и более стремится к 0.618 по увеличению порядкового номера. Отношение же каждого числа к предыдущему стремится к 1.618 (обратному к 0.618).

13:21=0,619…

21:34=0,618…

2. При делении каждого числа на следующее за ним, через одно получается число 0.382; наоборот – соответственно 2.618.

55: 144:55=2,618…

144=0,382…
3. Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236.

Одно из свойств последовательности чисел Фибоначчи очень любопытно. Если взять две последовательные пары из ряда и разделить большее число на меньшее, результат будет постепенно приближаться к золотому сечению.


Говоря языком математики, «предел отношений an+1 к an равен золотому сечению».

Пояснение о рекурсии
Рекурсия – определение, описание, изображение объекта или процесса, в котором содержится сам этот объект или процесс. Т.е., по сути, объект или процесс является частью самого себя.
Рекурсия находит широкое применение в математике и информатике, и даже в искусстве и массовой культуре.
Числа Фибоначчи определяются с помощью рекуррентного соотношения. Для числа n>2 n-е число равно (n – 1) + (n – 2).

Пояснение о золотом сечении
Золотое сечение – деление целого (например, отрезка) на такие части, которые соотносятся по следующему принципу: большая часть относится к меньшей так же, как и вся величина (например, сумма двух отрезков) к большей части.
Первое упоминание о золотом сечении можно встретить у Евклида в его трактате «Начала» (примерно 300 лет до н.э.). В контексте построения правильного прямоугольника.
Привычный нам термин в 1835 году ввел в оборот немецкий математик Мартин Ом.
Если описывать золотое сечение приблизительно, оно представляет собой пропорциональное деление на две неравных части: примерно 62% и 38%. В числовом выражении золотое сечение представляет собой число 1,6180339887.
Золотое сечение находит практическое применение в изобразительном искусстве (картины Леонардо да Винчи и других живописцев Ренессанса), архитектуре, кинематографе («Броненосец «Потемкин» С. Эзенштейна) и других областях. Долгое время считалось, что золотое сечение – наиболее эстетичная пропорция. Такое мнение популярно и сегодня. Хотя по результатам исследований визуально большинство людей не воспринимают такую пропорцию наиболее удачным вариантом и считают слишком вытянутой (непропорциональной).

Длина отрезка с = 1, а = 0,618, b = 0,382.

Отношение с к а = 1, 618.

Отношение с к b = 2,618


А теперь вернемся к числам Фибоначчи. Возьмем два следующих друг за другом члена из его последовательности. Разделим большее число на меньшее и получим приблизительно 1,618. А теперь задействуем то же большее число и следующий за ним член ряда (т.е. еще большее число) – их отношение рано 0,618.
Вот пример: 144, 233, 377.
233/144 = 1,618 и 233/377 = 0,618
Кстати, если вы попробуете проделать тот же эксперимент с числами из начала последовательности (например, 2, 3, 5), ничего не получится. Ну, почти. Правило золотого сечения почти не соблюдается для начала последовательности. Но зато по мере продвижения вдоль ряда и возрастания чисел работает отлично.
И для того, чтобы вычислить весь ряд чисел Фибоначчи, достаточно знать три члена последовательности, идущих друг за другом. Можете убедиться в этом сами!
Задачи о гирях
Задача о выборе наилучшей системы гирь для взвешивания на рычажных весах впервые была сформулирована именно Фибоначчи. Леонардо Пизанский предлагает два варианта задачи:
Простой вариант: требуется найти пять гирь, с помощью которых можно найти все веса меньше 30, при этом гири можно класть только на одну чашу весов (Ответ: 1, 2, 4, 8, 16).

Решение строится в двоичной системе счисления.


Сложный вариант: требуется найти наименьшее число гирь, с помощью которого можно взвесить все веса меньше заданного (Ответ: 1, 3, 9, 27, 81,…).

Решение строится в системе счисления по основанию три и в общем случае представляет собой последовательность A000244 в OEIS.


Задачи по теории чисел
Кроме задачи о кроликах, Фибоначчи предлагал ряд других задач по теории чисел:

Найти число, которое делится на 7 и даёт в остатке единицу при делении на 2, 3, 4, 5 и 6;

Найти число, произведение которого с семёркой даёт остатки 1, 2, 3, 4, 5 при делении на 2, 3, 4, 5, 6, соответственно;

Найти квадратное число (то есть число, равное квадрату целого числа), которое при увеличении или уменьшении на 5 давало бы квадратное число.


Некоторые другие задачи
Найти число, 19/20 которого равно квадрату самого числа. (Ответ: 19/20)[2].

Сплав из 30 весовых частей состоит из трёх металлов: первый металл достоинством по три монеты на одну часть, второй металл по две монеты на одну часть, а у третьего металла каждые две части стоят по одной монете; стоимость всего сплава 30 монет. Сколько частей каждого металла содержит сплав? (Ответ: 3 части первого металла, 5 частей второго металла, 22 части третьего). В таких терминах Фибоначчи переформулировал известную задачу о птицах, в которой были использованы те же самые числа (30 птиц трёх разных видов стоят 30 монет, по заданным ценам найти количество птиц каждого вида).



«Шуточная задача о семи старухах», которые шли в Рим, и у каждой было по семь мулов, на каждом из которых по семь мешков, в каждом из которых по семь хлебов, в каждом из которых по семь ножей, каждый из которых в семи ножнах. Нужно найти общее число предметов. Эта задача обошла много стран, первое известное упоминание о ней было ещё в Древнем Египте в папирусе Ахмеса. (Ответ: 137 256).
Задачи по комбинаторике
Числа Фибоначчи находят широкое применение при решении задач по комбинаторике.
Комбинаторика – это раздел математики, который занимается исследованием выборки некого заданного числа элементов из обозначенного множества, перечислением и т.п.
Давайте рассмотрим примеры задач по комбинаторике, рассчитанных на уровень старшей школы.
Задача №1:
Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?
Решение:
Число способов, которыми Леша может подняться на лестницу из n ступенек, обозначим аn. Отсюда следует, что a1 = 1, a2 = 2 (ведь Леша прыгает либо на одну, либо через две ступеньки).
Оговорено также, что Леша прыгает по лестнице из n > 2 ступенек. Предположим, с первого раза он прыгнул на две ступеньки. Значит, по условию задачи, ему нужно запрыгнуть еще на n – 2 ступеньки. Тогда количество способов закончить подъем описывается как an–2. А если считать, что в первый раз Леша прыгнул только на одну ступеньку, тогда количество способов закончить подъем опишем как an–1.
Отсюда получаем такое равенство: an = an–1 + an–2 (выглядит знакомо, не правда ли?).
Раз мы знаем a1 и a2 и помним, что ступенек по условию задачи 10, вычисли по порядку все аn: a3 = 3, a4 = 5, a5 = 8, a6 = 13, a7 = 21, a8 = 34, a9 = 55, a10 = 89.
Ответ: 89 способов.
Задача №2:
Требуется найти количество слов длиной в 10 букв, которые состоят только из букв «а» и «б» и не должны содержать две буквы «б» подряд.
Решение:
Обозначим за an количество слов длиной в n букв, которые состоят только из букв «а» и «б» и не содержат двух букв «б» подряд. Значит, a1 = 2, a2 = 3.
В последовательности a1, a2, <…>, an мы выразим каждый следующий ее член через предыдущие. Следовательно, количество слов длиной в n букв, которые к тому же не содержат удвоенной буквы «б» и начинаются с буквы «а», это an–1. А если слово длиной в n букв начинается с буквы «б», логично, что следующая буква в таком слове – «а» (ведь двух «б» быть не может по условию задачи). Следовательно, количество слов длиной в n букв в этом случае обозначим как an–2 . И в первом, и во втором случае далее может следовать любое слово (длиной в n – 1 и n – 2 букв соответственно) без удвоенных «б».
Мы смогли обосновать, почему an = an–1 + an-2.
Вычислимтеперь a3 = a2 + a1 = 3 + 2 = 5, a4 = a3 + a2 = 5 + 3 = 8, <…>, a10 = a9 + a8 = 144. И получим знакомую нам последовательность Фибоначчи.
Ответ: 144.
Задача №3:
Вообразите, что существует лента, разбитая на клетки. Она уходит вправо и длится бесконечно долго. На первую клетку ленты поместим кузнечика. На какой бы из клеток ленты он ни находился, он может перемещаться только вправо: или на одну клетку, или на две. Сколько существует способов, которыми кузнечик может допрыгать от начала ленты до n-ой клетки?
Решение:
Обозначим число способов перемещения кузнечика по ленте до n-ой клетки как an. В таком случае a1 = a2 = 1. Также в n + 1-ую клетку кузнечик может попасть либо из n-ой клетки, либо перепрыгнув ее. Отсюда an + 1 = an – 1 + an. Откуда an = Fn – 1.
Ответ: Fn – 1.
Вы можете и сами составить подобные задачи и попробовать решить их на уроках математики вместе с одноклассниками.

Работы Фибоначчи
При покровительстве императора Леонардо Пизанский написал несколько книг:

«Книга абака» (Liberabaci), 1202 год, дополнена в 1228 году;

«Практика геометрии» (Practicageometriae), 1220 год;

«Цветок» (Flos) 1225 год;

«Книга квадратов» (Liberquadratorum), 1225 год;

Diminorguisa, утеряно;

Комментарии к книге X «Начал» Евклида, утеряно;

Письмо Теодорусу, 1225 год.



Золотой прямоугольник и спираль Фибоначчи
Еще одну любопытную параллель между числами Фибоначчи и золотым сечением позволяет провести так называемый «золотой прямоугольник»: его стороны соотносятся в пропорции 1,618 к 1. А ведь мы уже знаем, что за число 1,618, верно?
Например, возьмем два последовательных члена ряда Фибоначчи – 8 и 13 – и построим прямоугольник со следующими параметрами: ширина = 8, длина = 13.
А затем разобьем большой прямоугольник на меньшие. Обязательное условие: длины сторон прямоугольников должны соответствовать числам Фибоначчи. Т.е. длина стороны большего прямоугольника должна быть равной сумме сторон двух меньших прямоугольников.
Так, как это выполнено на этом рисунке (для удобства фигуры подписаны латинскими буквами).

Кстати, строить прямоугольники можно и в обратном порядке. Т.е. начать построение с квадратов со стороной 1. К которым, руководствуясь озвученным выше принципом, достраиваются фигуры со сторонами, равными числам Фибоначчи. Теоретически продолжать так можно бесконечно долго – ведь и ряд Фибоначчи формально бесконечен.
Если соединить плавной линией углы полученных на рисунке прямоугольников, получим логарифмическую спираль. Вернее, ее частный случай – спираль Фибоначчи. Она характеризуется, в частности, тем, что не имеет границ и не изменяет формы.

Подобная спираль часто встречается в природе. Раковины моллюсков – один из самых ярких примеров. Более того, спиральную форму имеют некоторые галактики, которые можно разглядеть с Земли. Если вы обращаете внимание на прогнозы погоды по телевизору, то могли заметить, что подобную спиральную форму имеют циклоны при съемке их со спутников.



Любопытно, что и спираль ДНК подчиняется правилу золотого сечения – соответствующую закономерность можно усмотреть в интервалах ее изгибов.


Такие удивительные «совпадения» не могут не будоражить умы и не порождать разговоры о неком едином алгоритме, которому подчиняются все явления в жизни Вселенной. Теперь вы понимаете, двери в какие удивительные миры способна открыть для вас математика?

Числа Фибоначчи в живой природе
Связь чисел Фибоначчи и золотого сечения наводит на мысли о любопытных закономерностях. Настолько любопытных, что возникает соблазн попробовать отыскать подобные числам Фибоначчи последовательности в природе и даже в ходе исторических событий. И природа действительно дает повод для подобного рода допущений. Но все ли в нашей жизни можно объяснить и описать с помощью математики?

Следует сказать, что спираль Фибоначчи может быть двойной. Существуют многочисленные примеры этих двойных спиралей, встречающихся повсюду. Так спирали подсолнухов всегда соотносятся  с рядом Фибоначчи. Даже в обычной сосновой шишке можно увидеть эту двойную спираль Фибоначчи. Первая спираль идет в одну сторону, вторая - в другую. Если посчитать  число чешуек в спирали, вращающейся в одном направлении, и число чешуек в другой спирали, можно увидеть, что это всегда  два последовательных числа ряда Фибоначчи. Может быть восемь в одном направлении и 13 в другом, или 13 в одном и 21 в другом 3.

  В чем разница между спиралями золотого сечения и спиралью Фибоначчи?  Спираль золотого сечения идеальна. Она соответствует  Первоисточнику гармонии. Эта спираль не имеет ни начала, ни конца. Она бесконечна. Спираль Фибоначчи имеет начало, от которого она начинает “раскрутку”. Это очень важное свойство. Оно позволяет Природе после очередного замкнутого цикла осуществлять строительство новой спирали с  “нуля”.
Итак, примеры живой природы, которые могут быть описаны с помощью последовательности Фибоначчи:

порядок расположения листьев (и веток) у растений – расстояния между ними соотносимы с числами Фибоначчи (филлотаксис);



расположение семян подсолнуха (семечки располагаются двумя рядами спиралей, закрученных в разном направлении: один ряд по часовой стрелке, другой – против);


расположение чешуек сосновых шишек;

лепестки цветов;

ячейки ананаса;

соотношение длин фаланг пальцев на человеческой руке (приблизительно) и т.д.



Растения

Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Cпираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Cовместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения.

Цикорий

Cреди придорожных трав растет ничем не примечательное растение - цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий - 38, четвертый - 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.


Сложноцветные растения

В строении соцветий сложноцветных растений вновь проявляется закономерность Золотого сечения:

Иpис имеет 3 лепестка;

Пpимула имеет 5 лепестков;

Амбpозия полыннолистная имеет 13 лепестков;

Hивяник обыкновенный имеет 34 лепестка;

Астpа имеет 55 и 89 лепестков.

Таким образом, суммарной последовательностью Фибоначчи легко можно трактовать закономерность проявлений Золотых чисел, встречаемых в природе. Эти законы действуют в независимости от нашего знания, от чьего-то желания принимать или не принимать их.


Ящерица живородящая

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции - длина ее хвоста так относится к длине остального тела, как 62 к 38.


 И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы - симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста. Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

Числа Фибоначчи в массовой культуре

Разумеется, такое необычное явление, как числа Фибоначчи, не может не привлекать внимание. Есть все же в этой строго выверенной закономерности что-то притягательное и даже таинственное. Неудивительно, что последовательность Фибоначчи так или иначе «засветилась» во многих произведениях современной массовой культуры самых разных жанров.


Мы вам расскажем про некоторые из них. А вы попробуйте поискать сами еще. Если найдете, поделитесь с нами в комментариях – нам ведь тоже любопытно!

Числа Фибоначчи упоминаются в бестселлере Дэна Брауна «Код да Винчи»: последовательность Фибоначчи служит кодом, при помощи которого главные герои книги открывают сейф.

В американском фильме 2009 года «Господин Никто» в одном из эпизодов адрес дома представляет собой часть последовательности Фибоначчи – 12358. Кроме этого, в другом эпизоде главный герой должен позвонить по телефонному номеру, который по сути – та же, но слегка искаженная (лишняя цифра после цифры 5) последовательность: 123-581-1321.

В сериале 2012 года «Связь» главный герой, мальчик, страдающий аутизмом, способен различать закономерности в происходящих в мире событиях. В том числе посредством чисел Фибоначчи. И управлять этими событиями также посредством чисел.

Разработчики java-игры для мобильных телефонов Doom RPG поместили на одном из уровней секретную дверь. Открывающий ее код – последовательность Фибоначчи.

В 2012 году российская рок-группа «Сплин» выпустила концептуальный альбом «Обман зрения». Восьмой трек носит название «Фибоначчи». В стихах лидера группы Александра Васильева обыграна последовательность чисел Фибоначчи. На каждый из девяти последовательных членов приходится соответствующее число строк ( 0, 1, 1, 2, 3, 5, 8, 13, 21):


0 Тронулся в путь состав
1 Щёлкнул один сустав
1 Дрогнул один рукав
2 Всё, доставайте стафф
Всё, доставайте стафф
3 Просьбой о кипятке
Поезд идёт к реке
Поезд идёт в тайге <…>.

лимерик (короткое стихотворение определенной формы – обычно это пять строк, с определенной схемой рифмовки, шуточное по содержанию, в котором первая и последняя строка повторяются или частично дублируют друг друга) Джеймса Линдона также использует отсылку к последовательности Фибоначчи в качестве юмористического мотива:


Плотная пища жён Фибоначчи
Только на пользу им шла, не иначе.
Весили жёны, согласно молве,
Каждая — как предыдущие две.

Космос

Из истории астрономии известно, что И. Тициус, немецкий астроном XVIII в., с помощью этого ряда (Фибоначчи) нашел закономерность и порядок в расстояниях между планетами солнечной системы

Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Cосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в.
Пирамиды

Пирамиды в Египте

Многие пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид это не гробница, а скоpее неразрешимая головоломка из числовых комбинаций. Замечательные изобpетательность, мастерство, время и труд аpхитектоpов пирамиды, использованные ими пpи возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий. Kлюч к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.

Площадь тpеугольника

356 x 440 / 2 = 78320

Площадь квадpата

280 x 280 = 78400

Длина грани пирамиды в Гизе равна 783.3 фута (238.7 м), высота пирамиды -484.4 фута (147.6 м). Длина гpани, деленная на высоту, приводит к соотношению Ф=1.618. Высота 484.4 фута соответствует 5813 дюймам (5-8-13) - это числа из последовательности Фибоначчи. Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618. Некоторые современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью - передать знания, которые они хотели сохранить для грядущих поколений. Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1.618 играет центральную роль.
Пирамиды в Мексике

Hе только египетские пирамиды построены в соответствии с совершенными пpопоpциями золотого сечения, то же самое явление обнаружено и у мексиканских пирамид. Возникает мысль, что как египетские, так и мексиканские пирамиды были возведены приблизительно в одно время людьми общего происхождения.



Последовательность Фибоначчи в строении животных

В любой книге в качестве примера показывают раковину наутилуса. Причем во многих изданиях сказано, что это спираль золотого сечения, но это неверно – это спираль Фибоначчи. Можно увидеть совершенство рукавов спирали, но если посмотреть на начало, то он не выглядит таким совершенным. Два самых внутренних ее изгиба фактически равны. Второй и третий изгибы чуть ближе приближаются к «фи». Потом, наконец, получается эта изящная плавная спираль. Вспомните отношения второго члена к первому, третьего ко второму, четвертого к третьему, и так далее. Будет понятно, что моллюск аккурат следует математике ряда Фибоначчи.

Числа Фибоначчи проявляются в морфологии различных организмов. Например, морские звезды. Число лучей у них отвечает ряду чисел Фибоначчи и равно 5, 8, 13, 21, 34, 55. У хорошо знакомого комара - три пары ног, брюшко делится на восемь сегментов, на голове пять усиков - антенн. Личинка комара членится на 12 сегментов. Число позвонков у многих домашних животных равно 55.

Пропорции человеческого тела

Друнвало Мелхиседек в книге "Древняя тайна Цветка Жизни" пишет: «Да Винчи вычислил, что, если нарисовать квадрат вокруг тела, потом провести диагональ от ступней до кончиков вытянутых пальцев, а затем провести параллельную горизонтальную линию (вторую из этих параллельных линий) от пупка к стороне квадрата, то эта горизонтальная линия пересечет диагональ точь-в-точь в пропорции «фи», как и вертикальную линию от головы до ступней. Если считать, что пупок находится в той совершенной точке, а не слегка выше для женщин или чуть ниже для мужчин, то это означает, что тело человека поделено в пропорции «фи» от макушки до ступней.

Если бы эти линии были единственными, где в человеческом теле имеется пропорция фи, это, вероятно, было бы только интересным фактом. На самом деле пропорция фи обнаруживается в тысячах мест по всему телу, а это не просто совпадение. Вот некоторые явственные места в теле человека, где обнаруживается пропорция фи. Длина каждой фаланги пальца находится в пропорции «фи» к следующей фаланге…Та же пропорция отмечается для всех пальцев рук и ног. Если соотнести длину предплечья с длиной ладони, то получится пропорция «фи», так же длина плеча относится к длине предплечья. Или отнесите длину голени к длине стопы и длину бедра к длине голени. Пропорция фи обнаруживается во всей скелетной системе. Она обычно отмечается в тех местах, где что-то сгибается или меняет направление. Она также обнаруживается в отношениях размеров одних частей тела к другим. Изучая это, все время удивляешься».
                

Великий Гете, поэт, естествоиспытатель и художник, мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввел в научный обиход термин морфология.

Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.
Числа Фибоначчи в психологии.
Числа фибоначчи и Золотое сечение также используется и в психологии. Например, чтобы выяснить, как развивается механизм творчества, В.В. Клименко воспользовался математикой, а именно законами чисел Фибоначчи и пропорцией «золотого сечения» — законами природы и жизни человека.

Если развернуть в ряд числа Фибоначчи, то получим: 1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89 и т.д. Отношение между числами Фибоначчи составляет 0,618. Развитие человека также происходит соответственно данной пропорции и подчиняется закону ее чисел, разделяя нашу жизнь на этапы с теми или иными доминантами механизма творчества.

Числа Фибоначчи делят нашу жизнь на этапы по количеству прожитых лет:


  • 0 — начало отсчета — ребенок родился. У него еще отсутствуют не только психомоторика, мышление, чувства, воображение, но и оперативный энергопотенциал. Он — начало новой жизни, новой гармонии;

  • 1 — ребенок овладел ходьбой и осваивает ближайшее окружение;

  • 2 — понимает речь и действует, пользуясь словесными указаниями;

  • 3 — действует посредством слова, задает вопросы;

  • 5 — «возраст грации» — гармония психомоторики, памяти, воображения и чувств, которые уже позволяют ребенку охватить мир во всей его целостности;

  • 8 — на передний план выходят чувства. Им служит воображение, а мышление силами своей критичности направлено на поддержку внутренней и внешней гармонии жизни;

  • 13 — начинает работать механизм таланта, направленный на превращение приобретенного в процессе наследования материала, развивая свой собственный талант;

  • 21 — механизм творчества приблизился к состоянию гармонии и делаются попытки выполнять талантливую работу;

  • 34 — гармония мышления, чувств, воображения и психомоторики: рождается способность к гениальной работе;

  • 55 — в этом возрасте, при условии сохраненной гармонии души и тела, человек готов стать творцом. И так далее...

Циклы ряда Фибоначчи

  Законы «золотой пропорции», «золотого сечения» связаны с цифровым рядом Фибоначчи, открытого в 1202 году, является направлением в теории кодирования информации.

          За многовековую историю познания чисел Фибоначчи, образуемый его членами отношения (числа) и их различные инварианты скрупулезно изучены и обобщены, но так полностью и не расшифрованы.

         …Цифровой код цивилизации можно определить с помощью различных методов в нумерологии. Например, с помощью приведения сложных чисел к однозначным (к примеру: 13 есть (1+3)=4, 21 есть (2+3)=5 и т.д.) Проводя подобную процедуру сложения со всеми сложными числами ряда Фибоначчи, получим следующий ряд из 24 цифр:

   1,1,2,3,5,8,4,3,7,1,8,9,8,8,7,6,4,1,5,6,2,8,1,9

1        1                                                     1                          1          75025

2        1                                                     1                          1          75025

3        2                                                     2                          2          150050

4        3                                                     3                          3          225075

5        5                                                     5                          5          375125

6        8                                                     8                          8          600200

7        4        1+3                                       13                        4          975325

8        3        2+1                                       21                        3          1575525

9        7        3+4                                       34                        7          2550850

10      1        5+5=10=1                             55                        1          4126375

11      8        8+9=17=1+7                        89                        8          6677225

12      9        1+4+4                                   144                      9          10803600

13      8        2+3+3                                   233                      8          17480825

14      8        3+7+7=17=1+7=8                377                      8          28284425

15      7        6+1+0=7                               610                      7          45765250

16      6        9+8+7=24=2+4=6                987                      6          74049675

17      4        1+5+9+7=22=2+2=4            1597                    4          119814925

18      1        2+5+8+4=19+1+9=10=1     2584                    1          193864600

19      5        4+1+8+1=14=1+4=5            4181                    5          313679525

20      6        6+7+6+5=24=2+4=6            6765                    6          507544125

21      2        1+0+9+4+6=20=2                10946                  2          821223650

22      8        1+7+7+1+1=17=1+7=8       17711                  8          1328767775

23      1        2+8+6+5+7=28=2+8=10=1 28657                  1          2149991425

24      9        4+6+3+6+8=27+2+7=9       46368                  9          3478759200

 

 далее сколько не преобразовывай числа в цифры, через 24-ре цифры цикл будет последовательно повторяться бесконечное количество раз…



…не является ли набор из 24 цифр своеобразным цифровым кодом развития цивилизации?

Увы, но на этот вопрос ученые не могут пока ответить.



Платоновы тела и ряд Фибоначчи

    А теперь рассмотрим еще одно,  замечательное свойства  ряда Фибоначчи.

   Существует всего пять уникальных форм, имеющих первостепенное значение. Они называются Платановыми телами. Любое Платоново тело имеет некоторые особые характеристики.

    Во-первых, все грани такого тела равны по размеру.

    Во-вторых, ребра Платонова тела — одной длины.

    В-третьих, внутренние углы между его смежными гранями равны.

 И, в-четвертых, будучи вписанным в сферу, Платоново тело каждой своей вершиной касается поверхности этой сферы.

       


 

       Есть только четыре формы помимо куба , имеющие все эти характеристики. Второе тело — это тетраэдр (тетра означает «четыре»), имеющий четыре грани в виде равносторонних треугольников и четыре вершины. Еще одно тело — это октаэдр (окта означает «восемь»), восемь граней которого — это равносторонние треугольники одинакового размера. Октаэдр содержит 6 вершин. Куб имеет 6 граней и восемь вершин. Два других Платоновых тела несколько сложнее. Одно называется икосаэдр, что означает «имеющий 20 граней», представленных равносторонними треугольниками.  Икосаэдр имеет 12 вершин. Другое называется додекаэдр (додека — это «двенадцать»). Его гранями являются 12 правильных пятиугольников. Додекаэдр имеет двадцать вершин.

          Эти тела обладают замечательными свойствами быть вписанными все всего в две фигуры - сферу и куб. Подобная взаимосвязь с Платоновыми телами прослеживается во всех сферах. Так, например, системe орбит планет солнечной системы можно представить в виде вложенных друг в друга Платоновых тел, вписанных в соответствующие сферы, которые и определяют радиусы орбит соответствующих  планет солнечной системы.        

       


ЗАКЛЮЧЕНИЕ

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве и архитектуре, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления.


Таким образом, суммарной последовательностью Фибоначчи легко можно трактовать закономерность проявлений Золотых чисел, встречаемых в природе. Эти законы действуют в независимости от нашего знания, от чьего-то желания принимать или не принимать их. 
В своей работе, я, конечно же, не могу до мельчайших подробностей изложить суть этого вопроса, но я постарался отразить наиболее интересные и весомые аспекты.

Я убежден, что данная тема будет актуальна еще долгое время, и будут открываться все новые и новые факты, подтверждающие присутствие и влияние последовательности Фибоначчи на нашу жизнь.


Я надеюсь, что смог рассказать вам сегодня много интересного и полезного. Вы, например, теперь можете поискать спираль Фибоначчи в окружающей вас природе. Вдруг именно вам удастся разгадать «секрет жизни, Вселенной и вообще».
Хотя существует мнение, что почти все утверждения, находящие числа Фибоначчи в природных и исторических явлениях, неверны — это распространенный миф, который часто оказывается неточной подгонкой под желаемый результат.

Поделитесь с Вашими друзьями:


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал