Дистанционное обучение



страница7/29
Дата23.04.2016
Размер1.66 Mb.
ТипУчебно-практическое пособие
1   2   3   4   5   6   7   8   9   10   ...   29

Кадмий склонен к активному биоконцентрированию, что приводит в достаточно короткое время к накоплению этого элемента в избыточных биодоступных концентрациях. Поэтому кадмий по сравнению с другими тяжелыми металлами является наиболее сильным токсикантом почв (Cd > Ni > Cu > Zn).

Кадмий не образует собственных минералов, а присутствует в основном в виде примесей. В отличие от цинка, большая часть его в почвах представлена обменными формами (56-84%). Главная отличительная особенность его поведения в почвах заключается в том, что он практически не связывается гумусовыми веществами.

В результате накопления кадмия в почвах происходит его биоконцентрирование в продовольственном сырье и пищевых продуктах растительного и животного происхождения. В нормальных геохимических регионах с относительно чистой экологией содержание кадмия в зерновых культурах составляет 28-95 мкг/кг; хлебе – 2-4,3 мкг/кг, горохе – 15-19 мкг/кг, фасоли – 5-12 мкг/кг, картофеле – 12-60 мкг/кг, капусте – 2-26 мкг/кг, помидорах – 10-30 мкг/кг, салате – 17-23 мкг/кг, фруктах – 9-42 мкг/кг, растительном масле – 10-60 мкг/кг, сахаре – 6-31 мкг/кг. Среднее содержание кадмия в продуктах животного происхождения составило: в молоке – 2,4 мкг/кг, твороге – 6 мкг/кг, яйцах – 23-260 мкг/кг.

В организме человека с пищей поступает примерно 80% кадмия, 20%   через легкие из атмосферы и при курении. С рационом взрослый человек получает в сутки 30-160 и более мкг кадмия на 1 кг массы тела, а в кадмиевых геохимических районах – 300 мкг/кг. Попадая в организм, он находится в органах и тканях в ионной форме или в комплексе с низкомолекулярным белком – металлотионеином.

В виде этого соединения кадмий не токсичен, поэтому синтез металлотионеина является защитной реакцией организма при поступлении небольших количеств кадмия. Здоровый организм человека содержит около 50 мг кадмия. В организме новорожденных он отсутствует и появляется к 10-ому месяцу жизни.

Ртуть является самым токсичным элементом в природных экосистемах. По токсикологическим свойствам соединения ртути классифицируются на следующие группы: элементная ртуть, неорганические соединения, алкилртутные (метил- и этил-) соединения с короткой цепью и другие ртутьорганические соединения, а также комплексные соединения ртути с гумусовыми кислотами.

Загрязнение пищевых продуктов ртутью может происходить в результате:



  • естественного процесса ежегодного ее испарения из земной коры в количестве 25-125 тыс.т;

  • использования ртути в народном хозяйстве – производство хлора и щелочей, амальгамная металлургия, электротехническая промышленность, медицина и стоматология, сельское хозяйство, например, применение каломели (HgCl2) в качестве антисептика, раствора сулемы (HgCl2) – для дезинфекции, ртутной серной мази – при кожных заболеваниях, фунгицидов (алкилированные соединения ртути) – для протравливания семян.

Второй тип круговорота, связанный с метилированием неорганической ртути, является наиболее опасным, поскольку приводит к образованию метилртути, диметилртути, других высокотоксичных ее соединений, поступающих в пищевые цепи. Метилирование ртути осуществляют аэробные и анаэробные микробы, а также микромицеты, обитающие в почве, в верхнем слое донных отложений водоемов. Предполагают, что метилирование ртути микроорганизмами может осуществляться при определенных условиях в кишечнике животных и человека.

Фоновое содержание ртути в съедобных частях сельскохозяйственных растений составляет от 2 до 20 мкг/кг, редко до 50-200 мкг/кг. Среднее содержание в овощах – 3-59 мкг/кг, фруктах – 10-124 мкг/кг, бобовых – 8-16 мкг/кг, зерновых – 10-103 мкг/кг. Наибольшая концентрация ртути обнаружена в шляпочных грибах – 6-447 мкг/кг, в перезрелых – до 2000 мкг/кг. В отличие от растений, в грибах может синтезироваться метилртуть.

Фоновое содержание ртути в продуктах животноводства составляет: в мясе – 2-5 мкг/кг, яйца – 2-15 мкг/кг.

Мясо рыбы отличается наибольшей концентрацией ртути и ее соединений, которые активно аккумулируются в организме из воды и корма, содержащих другие гидробионты, богатые ртутью. В мясе хищных пресноводных рыб уровень ртути составляет 107-509 мкг/кг, нехищных – 79-200 мкг/кг, океанских – 300-600 мкг/кг. Организм рыбы способен синтезировать метилртуть, которая накапливается в печени при достаточном содержании в корме цианкобаламина (витамина В). У некоторых видов рыб в мышцах содержится белок   металлотионеин, с которым ртуть и другие металлы образуют комплексные соединения и накапливаются в организме. У таких рыб содержание ртути достигает 500-20000 мкг/кг (рыба-сабля) или 5000-14000 мкг/кг (тихоокеанский марлин). При загрязнении рек, морей и океанов ртутью ее уровень в гидробионтах намного увеличивается и становится опасным для здоровья человека.

При варке рыбы и мяса концентрация ртути в них снижается, при аналогичной обработке грибов – остается без изменений. Это различие объясняется тем, что в грибах ртуть связана с аминогруппами азотсодержащих соединений, в рыбе и мясе – с серосодержащими аминокислотами.

Безопасным уровнем содержания ртути в крови считают 50-100 мкг/л, волосах – 30-40 мкг/г, моче – 5-10 мкг/сут. Человек получает с суточным рационом 0,045-0,060 мг ртути, что примерно соответствует рекомендуемой ФАО/ВОЗ по ДСП – 0,05 мг. ПДК ртути в водопроводной воде, идущей для приготовления пищи, составляет 0,005 мг/л, международный стандарт – 0,01 мг/л (ВОЗ, 1974).



Олово. Необходимость олова для организма человека не доказана. Вместе с тем пищевые продукты содержат этот элемент до 1-2 мг/кг, организм взрослого его участия в обменных процессах.

Неорганические соединения олова малотоксичны, а органические – более токсичны. Они находят применение в сельском хозяйстве в качестве фунгицидов, в химической промышленности – как стабилизаторы поливинилхлоридных полимеров. Основным источником загрязнения пищевых продуктов оловом являются консервные банки, фляги, железные и медные кухонные котлы, другая тара и оборудование, которые изготавливаются с применением лужения и гальванизации. Активность перехода олова в пищевой продукт возрастает при температуре хранения выше 20о С, высоком содержании в продукте органических кислот, нитратов и окислителей, которые усиливают растворимость олова.

Имеются данные, что токсичная доза олова при его однократном поступлении – 5-7 мг/кг массы тела, т.е. 300-500 мг. Отравление оловом может вызвать признаки острого гастрита (тошнота, рвота, и др.) и снижение активности пищеварительных ферментов.

Железо. Занимает четвертое место среди наиболее распространенных в земной коре элементов (5% земной коры по массе).

Этот элемент необходим для жизнедеятельности как растительного, так и животного организма. У растений дефицит железа проявляется в желтизне листьев, у человека вызывает железодефицитную анемию, поскольку двухвалентное железо – кофактор в гемсодержащих ферментах, участвует в образовании гемоглобина. Железо выполняет целый ряд других жизненно важных функций: перенос кислорода, образование эритроцитов, обеспечивает активность негемовых ферментов – альдолазы, триптофаноксигеназы и т.д.

В организме взрослого человека содержится около 4,5 г железа. Содержание железа в пищевых продуктах колеблется в пределах 0,07-4 мг/100 г. Основным источником железа в питании являются печень, почки, бобовые культуры (6-20 мг/100 г). Потребность взрослого человека в железе составляет около 14 мг/сут, у женщин в период беременности и лактации она возрастает.

Железо из мясных продуктов усваивается организмом на 30%, из растений – 10%. Последнее объясняется тем, что растительные продукты содержат фосфаты и фитин, которые образуют с железом труднорастворимые соли, что препятствует его усвояемости. Чай также снижает усвояемость железа в результате связывания его с дубильными веществами в труднорастворимый комплекс.



Мышьяк. Мышьяк широко распространен в окружающей среде. Он содержится во всех объектах биосферы: морской воде – около 5 мкг/кг, земной коре – 2 мг/кг, рыбах и ракообразных – в наибольших количествах. Природный мышьяк находится в элементном состоянии, в виде арсенидов и арсеносульфидов тяжелых металлов.

Наиболее распространенными неорганическими соединениями мышьяка являются оксид трехвалентного мышьяка (III) As2O3 и оксид пятивалентного мышьяка (V) As2O5 .

По степени токсичности соединения мышьяка располагаются в следующий ряд: AsН3> As3+> As5+> RАsX.

В результате широкого распространения в окружающей среде и использования в сельском хозяйстве мышьяк присутствует в большинстве пищевых продуктов. Обычно его содержание в пищевых продуктах достаточно мало – менее 0,5 мг/кг и редко превышает 1 мг/кг, за исключением некоторых морских организмов, которые аккумулируют этот элемент. При отсутствии значительных загрязнений, содержание мышьяка в хлебных изделиях составляет до 2,4 мг/кг, фруктах до 0,17 мг/кг, напитках до 1,3 мг/кг, мясе до 1,04 мг/кг, молочных продуктах до 0,23 мг/кг. В морских продуктах содержится больше мышьяка, обычно на уровне 1,5-15,3 мг/кг.

Фоновый уровень мышьяка в продуктах питания из нормальных геохимических регионов составляет в среднем 0,5-1 мг/кг: в овощах и фруктах – 0,01-0,2 мг/кг, зерновых   0,006-1,2 мг/кг, говядине и свинине – 0,005-0,05 мг/кг, яйцах   0,003-0,03, коровьем молоке и кисломолочных продуктах – 0,005-0,01 мг/кг, твороге – 0,003-0,03 мг/кг. Высокая концентрация мышьяка, как и других химических элементов, отмечается в печени, пищевых гидробионтах, в частности морских. В организме человека обнаруживается около 1,8 мг мышьяка.

По данным экспертов ФАО/ВОЗ, суточное поступление мышьяка в организм взрослого человека составляет в среднем 0,05-0,42 мг, т.е. около 0,007 мг/кг массы тела, и может достигать 1 мг в зависимости от его содержания в потребляемых продуктах питания и его проникновения из других объектов окружающей среды, а допустимая суточная доза мышьяка составляет для взрослого человека около 3 мг/сутки.



Хром и алюминий. Хром в небольших количествах находится во многих пищевых продуктах и напитках. Средне суточное потребление хрома с пищей составляет приблизительно 50-80 мкг. По данным отечественного гидромониторинга алюминий содержится в природных водах в концентрациях 0,001-10 мг/л. В промышленных стоках его концентрация достигает 1000 мг/л.

Продукты растительного происхождения содержат алюминия 10-100 мг/кг, редко – 300 мг/кг, продукты животного происхождения – 1-20 мг/кг. По данным исследований, в суточных рационах в разных городах России и странах СНГ содержится алюминия 18,8-85 мг, а в среднем – 25 мг.

Отечественными токсикологами установлено, что даже растворимые соли алюминия отличаются слабым токсическим действием. Поступление алюминия в организм человека в дозе 0,5 мг/кг массы тела не оказывает на него негативного воздействия.

3.1.2. Полициклические ароматические углеводороды
Насчитывается более 200 представителей полициклических ароматических углеводородов (ПАУ), являющихся сильными канцерогенами. Наиболее активным из них является 3,4-бенз(а)пирен, который был идентифицирован в 1993 г., как концентрированный компонент сажи и смолы, дибензпирен, дибензантрацин. К малотоксичным относят антрацит, фенатрен, ипрен, флуорантен.

Канцерогенная активность различных ПАУ на 70-80% обусловлена бенз(а)пиреном. Поэтому по его присутствию в пищевых продуктах и других объектах можно судить об уровне их загрязнения ПАУ и степени опасности для человека.

В пищевом сырье, полученном из экологически чистых растений, концентрация бенз(а)пирена составляет 0,03-1 мкг/кг. Термическая обработка приводит к увеличению его содержания до 50 мкг/кг и более. Полимерные упаковочные материалы играют немаловажную роль в загрязнении пищевых продуктов ПАУ. Например, жир молока экстрагирует до 95% бенз(а)пирена из парафинобумажных пакетов или стаканчиков. Высокая концентрация бенз(а)пирена наблюдается в табачном дыме.





Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   10   ...   29


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

    Главная страница