Электронный вариант курса лекций «Современные химические источники тока»


Никель-кадмиевые и никель-железные аккумуляторы



страница3/5
Дата04.10.2017
Размер1.68 Mb.
1   2   3   4   5

Никель-кадмиевые и никель-железные аккумуляторы

Cd  KOH  NiOOH и Fe  KOH  NiOOH

Рассмотрим эти две электрохимические системы вместе, так как они имеют много общего. Никель-кадмиевые (НК) и никель-железные (НЖ) аккумуляторы долгое время занимали второе место в мире после СА по распространенности. Но в XXI веке их выпуск постепенно снижается: начиная с 1990-х годов их стали теснить новые системы – литий-ионные и металлогидридные аккумуляторы. При этом Россия остается ведущей страной по выпуску НЖ аккумуляторов.

НК аккумулятор был предложен в 1899 году, серийное производство началось в 1910 году. Начало производства герметичных НК аккумуляторов относится к 1950 годам.

Удельная энергия НК и НЖ аккумуляторов практически такая же, как у свинцовых, и в зависимости от типа и условий эксплуатации лежит в интервале 20 – 35 Втч/кг или 40 – 70 Втч/л, но они имеют гораздо больший ресурс – до 2000 циклов, могут разряжаться большими токами (до 10С у некоторых разновидностей) и могут изготавливаться в полностью герметичном исполнении, не требующем никакого ухода. Герметичные – это только НК аккумуляторы, для них достигнута энергия 30 – 50 Втч/кг или 60 – 150 Втч/л. НК имеют лучшие характеристики, а НЖ – хуже, но в них нет дорогого и токсичного кадмия.

Fe имеет чуть более отрицательный равновесный электродный потенциал (E0 = –0.05 В), чем водородный электрод, а Cd чуть более положительный (E0 = +0.02 В). Другими словами, Fe расположен в ряду напряжений левее Н, а Cd – правее. Поэтому для Cd процесс коррозии за счет вытеснения Н2 из воды термодинамически невозможен, а Fe может медленно корродировать (и корродирует).

Основные полуреакции следующие:


(–) Cd + 2OH-  Cd(OH)2 + 2e
(+) NiOOH + H2O + e  Ni(OH)2 + OH-
Суммарная токообразующая реакция:

разряд


Cd + 2 NiOOH +2H2O  2 Ni(OH)2 + Cd(OH)2

заряд


Для железа – аналогичные реакции. Это упрощенная схема. На положительном электроде протекают более сложные процессы, так как оксиды никеля существуют в нескольких модификациях, различающихся степенью гидратации (NiOx∙yH2O). Из-за образования при заряде оксидов четырехвалентного никеля НРЦ свежезаряженного аккумулятора достигает 1.45 – 1.7 В, что намного превышает теоретическое значение ЭДС, равное 1.30 В для НК и 1.37 В для НЖ. Постепенно высшие оксиды распадаются, и НРЦ принимает стационарное значение 1.30 – 1.34 В для НК и 1.37 – 1.41 В для НЖ, что также выше ЭДС.

Электролитом является 20 – 28 масс.% раствор KOH. Щелочь не участвует в суммарной токообразующей реакции, поэтому контроль плотности электролита не используют. При работе до –150С употребляют 20% КОН ( = 1.2 г/см3) с добавкой 10 г/л LiOH. Если аккумулятор рассчитан на работу до –400С, применяют 28% КОН ( = 1.27 г/см3) для увеличения электропроводности и снижения температуры замерзания.




Зарядные и разрядные кривые никель-кадмиевого аккумулятора (схематично)
Температурная зависимость емкости и напряжения НК и НЖ аккумуляторов выражена менее резко, чем у других электрохимических систем. НК вполне работоспособны при –400С, причем они даже способны и заряжаться при –400С! Для НЖ рабочим пределом является температура –100С. Ресурс работы для разных типов составляет от 500 до 2000 – 5000 циклов. Срок службы – 10 лет, а для некоторых типов – 25 лет и более. Для НЖ характерен высокий саморазряд, до 25 – 35% в месяц при 200С.

Конструктивно выпускаются несколько различных вариантов. В негерметичных аккумуляторах используют обычный принцип призматической баночной конструкции, аналогично рассмотренным выше. Требуется периодически доливать дистиллированную воду. Герметичные НК аккумуляторы изготавливают призматические баночные, дисковые и цилиндрические.

Герметичные НК аккумуляторы не требуют никакого ухода. В них при избыточном заряде (перезаряде) реализуется так называемый кислородный цикл. После полного окисления Ni(OH)2 избыточный заряд тратится на окисление гидроксид-ионов щелочи по реакции

перезаряд

2OH- → 1/2O2 + H2O + 2e
Выделяющийся на «плюсе» кислород проникает через сепаратор на отрицательный электрод и восстанавливается на нем по обратной реакции
1/2O2 + H2O + 2e → 2OH-
Суммарно никаких химических изменений в электролите не происходит, вся энергия превращается в тепло. По этой причине в конце разряда герметичный аккумулятор нагревается. Если ток заряда меньше критического значения, герметичные НК аккумуляторы допускают неограниченный перезаряд.

НК и НЖ аккумуляторы заряжают постоянным током. В отличие от СА, они могут длительно храниться как в заряженном, так и в полуразряженном или разряженном состоянии. Наиболее высокие удельные характеристики имеют цилиндрические рулонные конструкции аккумуляторов, наиболее низкие – дисковые конструкции. Это связано с толщиной электродов и с особенностями конструкции. Из-за сравнительно низкого напряжения НК и НЖ систем требуется большее число элементов в батарее (например, 10 штук для создания 12 В батареи). Это, а также сравнительно высокая цена являются недостатками, в остальном же НК превосходят СА.


Никель-металлгидридный аккумулятор

MH  KOH NiOOH

Никель-металлгидридный (Ni-МН) аккумулятор появился как дальнейшее развитие НК системы в результате замены кадмиевого электрода на водородный электрод. Причины – 1) недостаточно высокая плотность энергии традиционных СА, НК и НЖ систем; 2) экологическая опасность свинца и кадмия. Широко используемые в производстве источников тока Cd, Pb, Hg и их соединения являются высокотоксичными.

Первый герметичный никель-водородный (Ni-Н2) аккумулятор был предложен в СССР в 1964 году:
(–) H2 KOH NiOOH (+)
При заряде такого аккумулятора отрицательный электрод генерирует газообразный водород Н2, накапливающийся под давлением во всем свободном объеме внутри герметичного корпуса. Токообразующая полуреакцая следующая:
(–) 1/2Н2 + OH-  H2O + e

Положительным электродом является оксидно-никелевый электрод, как и в НК и НЖ системах, соответственно электродная полуреакция та же самая:


(+) NiOOH + H2O + e ↔ Ni(OH)2 + OH-
Суммарно

разряд


1/2Н2 + NiOOH ↔ Ni(OH)2

заряд
Давление Н2 в таком ХИТ растет пропорционально заряду и достигает 100 атм при полном заряде. Такие аккумуляторы надежно эксплуатируются в космической технике. Однако использовать их в бытовой электроаппаратуре, конечно, затруднительно.

Начиная с 1970-х годов в научной литературе стали появляться сообщения о металлических сплавах, способных обратимо поглощать большие количества водорода, образуя гидриды металлов. Таких сплавов к настоящему времени предложено несколько десятков. Наиболее известный среди них сплав LaNi5 (поглощает 6 атомов Н на формульную единицу сплава) и его производные LaNi2-xMx, MnNi5, Ti2Ni. Но промышленное использование Ni-МН аккумулятора началось лишь в середине 1980-х годов после создания сплава La-Ni-Co, позволившего электрохимически обратимо абсорбировать водород на протяжении более 100 циклов.

Токообразующая полуреакция на отрицательном электроде

разряд

(–) MH + OH-  M + H2O + e



заряд

и суммарная реакция

разряд

MH + NiOOH ↔ Ni(OH)2



заряд

Здесь символом М обозначен сплав, MH – металлогидрид. Из этих реакций видно, что процесс заключается в переходе атома Н от одного электрода к другому электроду без расхода электролита и образования воды. Поэтому в электролите Ni-МН аккумулятора, в отличие от НК и НЖ систем, изменений не происходит.

Разрядная кривая почти такая же, как у НК аккумулятора, поскольку кадмий и водород очень близки по величине электродного потенциала.


Сравнение никель-кадмиевой и никель-металлогидридной систем
Ni-МН аккумуляторы имеют то же напряжение, что и НК, и выпускаются в таких же корпусах, являясь взаимозаменяемыми. Но замена кадмий на водород позволила в 1.5 – 2 раза увеличить удельные характеристики. Удельная энергия Ni-МН системы составляет 40 – 80 Втч/кг или 100 – 250 Втч/л.

Это система имеет ещё ряд преимуществ:



  1. Способность выдерживать высокие скорости разряда: до 5С постоянным током, до 10С импульсным. Отсюда возможность достижения высокой мощности – до 400 Вт/кг.

  2. Большой ресурс (типично 400 – 1500 циклов при 100%-ной глубине циклирования), срок службы – 5 лет.

  3. Способность МН-электрода к быстрому заряду. Ni-МН аккумуляторы позволяют производить сверхбыстрый заряд током 1С за 1 час или за 1.5 часа. Здесь надо сказать, что стандартным режимом заряда аккумуляторов НК и СА считается заряд током С/10. Из-за идущего параллельно электролиза воды время полного заряда составляет не 10, а 15 часов (в последние годы выпускают НК и СА, допускающие ускоренный заряд за 1 – 3 часа).

  4. Переход к более экологически чистым производствам. Отсутствие токсичных материалов.

Наряду с преимуществами есть и недостатки:

  1. Более высокая цена из-за применения РЗЭ или других редких металлов.

  2. Температурный диапазон не такой широкий, как у никель-кадмиевых ХИТ. Большая часть Ni-МН аккумуляторов неработоспособна ниже –100C и выше +400C.

  3. Саморазряд несколько выше, чем у НК (Ni-МН типично теряет 40% емкости за полгода хранения при 200C).




Конструкция никель-металлогидридного аккумулятора
При перезаряде Ni-МН аккумуляторов также реализуется кислородный цикл

перезаряд

2OH- ↔ 1/2O2 + H2O + 2e

Выделяющийся кислород проникает через сепаратор на отрицательный электрод и восстанавливается на нем по обратной реакции.

Применение Ni-МН аккумуляторов самое разнообразное. Прежде всего, для энергопитания современной портативной аппаратуры: переносных компьютеров, ноутбуков, сотовых телефонов, пейджеров, видео- и фотоаппаратуры, переносных электроинструментов (электродрели и т.п.), электробритв, зубных щеток, миксеров, обогревателей одежды и т.п. Но выпускаются также крупные и мощные тяговые аккумуляторы для электромобиля и для космической техники.

Ni-МН аккумуляторы имеют недавнюю историю. Их начали серийно производить за рубежом с 1987 года. Все последующие годы их производство стремительно росло. Сейчас они выпускаются всеми ведущими мировыми электротехническими фирмами, таким как SAFT (Франция), PANASONIC (Япония), SANYO (Япония), SONY (Япония), VARTA (Германия) и др. С начала 1990-х годов они начали вытеснять НК аккумуляторы, производство которых росло весь ХХ век, но с 1991 года начало сокращаться. Как представляется сейчас, со временем Ni-МН должны вытеснить НК аккумуляторы, некоторые фирмы уже объявили о прекращении выпуска НК.



Состояние отечественных разработок. Свинцовые и никель-кадмиевые аккумуляторы выпускаются в широком ассортименте многими российскими фирмами, крупное производство находится в г. Саратове, хотя зачастую ассортимент меньше, а качество ниже, чем у импортных изделий. С Ni-МН аккумуляторами ситуация хуже. Их развитие пришлось на 1990-е годы, когда промышленная наука находилась в России в кризисе. Ni-МН аккумуляторы только начали выпускаться в РФ (по данным на 2000 г. выпускаются двумя заводами в С.- Петербурге: «Мезон» и НИАИ).

ПЕРВИЧНЫЕ ЛИТИЕВЫЕ ИСТОЧНИКИ ТОКА

Литий обладает самым отрицательным электродным потенциалом среди всех металлов: –3.055 В в воде. Это связано с малым радиусом иона Li+ и его сильной гидратацией. В неводных растворителях его потенциал несколько положительнее: –2.887 В в пропиленкарбонате. Литий обладает самой высокой удельной энергией: 11760 Вт·ч/кг. Впервые интерес к разработке источников тока с использованием металлического лития в качестве отрицательного электрода проявился в 1960-ых годах. Вначале пытались применить традиционные водные электролиты (растворы щелочи). Появление на мировом рынке первых литиевых источников тока (ЛИТ) относится к началу 1970-х годов, и оно стало возможным только после разработки неводных растворов электролитов. Однако и с водным электролитом были разработаны литиевые ХИТ кратковременного действия. Рассмотрим вначале их.


Система литий-вода

Электрохимическая система может быть представлена в виде


(–) Li│LiOH │ H2O (Me) (+)
где Me – это инертный катод, не участвующий в токообразующей реакции. Его изготавливают из недорогих металлов (железо, сталь, никель). Токообраующие реакции имеют следующий вид:

на аноде Li → Li+ + e Ео = –3.056 В

на катоде Н2О + е → 0.5 Н2 + ОН- Е+о = –0.836В

суммарная Li + Н2О → Li+ + ОН- + 0.5 Н2↑ Ео = +2.22 В

Электролитом является щелочной раствор гидроксида лития, который образуется сам за счет реакции лития с водой. Такие ХИТ изготавливают в резервном исполнении, т.е. без электролита. В таком неактивном состоянии источник может храниться длительное время (более 10 лет). Приводится в действие заполнением морской водой. Генерация электроэнергии протекает параллельно с прямой химической реакцией лития с водой, но эта реакция в концентрированной щелочи протекает довольно медленно, так что потери лития за счет саморастворения невелики. В результате источник Li/H2O может работать несколько часов, обеспечивая очень высокие плотности тока (до 0.5 А/см2) и очень большую удельную энергию (до 3000 Вт·ч/кг, сравните с другими электрохимическими системами). Система Li-H2O – одна из самых энергоемких, но кратковременного действия. Основное применение – морское (гидроакустические буи, погружные аппараты, торпеды). Конструкции – самые разнообразные. Обычно требуется максимальная мощность, которая достигается при рабочем напряжении 1.2 В и плотности тока 0.3 А/см2 (см. рисунок).


Кривые U – J и P – J для источника Li/H2O (схематично).
Но система Li/H2O – это скорее исключение. Длительно работающие ЛИТ удалось создать только с применением неводных растворителей.
Растворители и соли для литиевых источников тока

Неорганические

1) Жидкий диоксид серы (легко сжижается под давлением) SO2


2) Тионилхлорид: SOCl2


3) Сульфурилхлорид: SO2Cl2


Органические

1) Ацетонитрил (АН) СН3-СN


2) Диметилформамид (ДМФА)

3) Диметилацетамид (ДМАА)



4) γ – бутиролактон (БЛ или ГБЛ)




5) Тетрагидрофуран (ТГФ)


6) 2-метил ТГФ


7) 1,2-диметоксиэтан (ДМЭ)


8) Этиленкарбонат (ЭК)


9) Пропиленкарбонат (ПК)


10) Диэтилкарбонат (ДЭК)


11) 1,3 – диксолан (ДОЛ)


12) Сульфолан (СФ)


13) Диметилсульфоксид (ДМСО)


Физические свойства растворителей самые разные. Есть легкокипящие (АН, ДМЭ, ДОЛ, ТГФ, ТХ) и высококипящие (ПК, СФ, ДМСО, ЭК) с самым разнообразным набором физико-химических свойств. Общие требования – устойчивость Li в этих растворителях и способность их образовывать концентрированные и высокоэлектропроводные растворы литиевых солей. С последним есть проблемы. Чтобы соль могла диссоциировать, нужна высокая диэлектрическая проницаемость ε растворителя. Этому требованию удовлетворяют, например, ПК, ЭК и СФ. Но такие растворители одновременно и очень вязкие, поэтому электропроводность растворов получается низкой. У растворителей же с малой вязкостью одновременно низкая ε, так что в них соли не диссоциируют на ионы. Поэтому часто применяют смешанные растворители (например, ПК+ДМЭ).

Простые литиевые соли и основания (например, LiCl, LiNO3, LiF, LiOH и др.) не растворяются в вышеперечисленных растворителях. Поэтому приходится применять комплексные соли, такие как LiClO4, LiBH4, LiPF6, LiAsF6, LiClAl4.



ПРИЧИНЫ УСТОЙЧИВОСТИ ЛИТИЕВОГО ЭЛЕКТРОДА

Литий – высокоактивный щелочной металл. Это свойство лития особенно ярко проявляется при попытке создать его чистую поверхность. Даже следовые количества вещества извлекаются им из окружающей среды. Даже в условиях сверхвысокого вакуума литиевая поверхность, «очищенная» ионной бомбардировкой, за считанные секунды «вылавливает» молекулы остаточного газа и покрывается тончайшей пленкой из продуктов взаимодействия. Литий энергично взаимодействует не только с водой, но и с азотом (нацело):

6Li + N2 → 2Li3N

С влажными газами реакция идет с образованием LiOH и также нацело.

Более того, термодинамические расчеты показывают принципиальную возможность восстановления литием ВСЕХ мыслимых веществ, которые могли бы использоваться вместо воды в качестве растворителя, даже предельных углеводородов. Например, восстановление ПК протекает по схеме:

Для этой реакции ∆G = –820 кДж/моль. Восстановление ЭК протекает по схеме:

Для этой реакции ∆G = –484 кДж/моль.

Величины изменения энергии Гиббса ∆G реакций восстановления растворителей имеют огромные отрицательные значения. В этом отношении эти растворители ничем не отличаются от воды. В то же время сам факт промышленного выпуска литиевых элементов, способных храниться годами, указывает на то, что сохранность литиевого электрода не является проблемой.

В настоящее время твердо установлено, что устойчивость Li в контакте со многими газами и растворителями обеспечивается образованием на поверхности металла защитной пленки из нерастворимых продуктов взаимодействия. В приведенных выше реакциях – это карбонат лития Li2CO3. В различных электролитах могут, кроме того, образовываться Li2O, LiCl, LiF и некоторые другие соли лития. Защитная пленка очень тонкая (несколько нанометров или десятков нанометров) и невооруженным глазом не видна.

Требования к чистоте растворителя и солей для электролита очень высокие. Допустимое содержание примесей составляет тысячные доли процента. Такие же требования к содержанию воды в электролите, которая является здесь очень нежелательной примесью (например, допустимая концентрация воды 30 ррm = 0.003 масс. %). В контакте с такими чистыми электролитами литий может храниться десятилетиями. Для многих типов выпускаемых ЛИТ гарантированный срок хранения составляет 10 или даже 15 лет. Саморазряд при комнатной температуре находится на уровне менее 1% в год. Обязательное требование к ЛИТ – полная герметичность, чтобы не допустить поглощения влаги и других примесей из окружающей среды.

Рассмотрим некоторые электрохимические системы с литиевым анодом, дошедшие до стадии промышленного выпуска.


Система Li│LiBr│SO2

Это – электрохимическая система с жидким катодом-электролитом. Здесь, как и в системе Li│H2O, в одном веществе (жидком SO2) объединены и растворитель, и активное катодное вещество-окислитель. Электрохимическое восстановление растворителя в этом случае протекает на специальном инертном электроде, в качестве которого обычно используется углерод. Диоксид серы SO2 находится в ячейке в жидком состоянии под небольшим давлением (3 атм.) Основная токообразующая реакция следующая:


Li + SO2 → ½ Li2S2O4

дитионит лития


Эта реакция протекает совершенно необратимо, для неё НРЦ = 2.95 В, среднее разрядное напряжение в зависимости от скорости разряда и температуры составляет 2.9 – 2.7 В. Разрядные кривые очень плоские, почти идеальные (см. рисунок).


Разрядные характеристики Li│SO2-элемента при различной температуре (схематично).
Достоинства системы Li│SO2:

  • Высокие значения удельных параметров (это общее свойство всех ЛИТ): 300 – 350 Вт·ч/кг и 500 – 550 Вт·ч/л.

  • Очень широкий температурным интервал работоспособности: от –60°С до +70°С. Li│SO2 элементы способны вполне удовлетворительно работать при температуре ниже –50°С.

  • Сохраняемость ХИТ Li│SO2 более 10 лет, в том числе они допускают хранение при температуре до +80°С.


Недостатки системы Li│SO2:

    • Гальванические элементы Li│SO2 не выдерживают большой плотности разрядного тока (впрочем, как и все ЛИТ, кроме водных). Их обычный режим – умеренный разряд на уровне 0.05С, максимально допускается нагрузка примерно 0.5С.

    • Работа при повышенном внутреннем давлении потенциально опасна разгерметизацией ХИТ.

    • Небольшой начальный «провал напряжения».


Система Li│LiAlCl4│SOCl2

Это также система с жидким растворителем-окислителем. Элементы системы Li/ТХ обладают максимальной удельной энергией среди всех разработанных ХИТ длительного действия – до 650 Вт·ч/кг или до 1300 Втч/л. Токобразующая реакция следующая (также совершенно необратимая):


4Li + 2SOCl2 → 4LiCl↓ + S↓ + SO2
ЭДС = НРЦ=3.67 В. Рабочее напряжение составляет в зависимости от тока разряда 3.3 – 3.5 В. Разрядная характеристика такая же чрезвычайно стабильная, как и у Li│SO2 элементов. Температурный интервал работоспособности от –70°С до +70°С, ЛИТ выдерживает кратковременное повышение до +100°С. Сохраняемость элементов в залитом состоянии 5 лет и более.


Разрядные характеристики Li│SOCl2-элемента при различной температуре (схематично).
ЛИТ Li│SO2 и особенно Li│SOСl2 обладают наивысшим характеристиками и выпускаются во всех промышленно развитых странах в широких масштабах в самых различных типоразмерах. В России производятся в г. Новочеркасск.

Достоинства и недостатки системы Li│SOСl2 примерно те же, что и системы Li│SO2, но более ярко выражены. Важно отметить следующие проблемы:



  • Потенциальная опасность при эксплуатации, возможность взрыва и возгорания; такие ХИТ обязательно снабжаются защитными клапанами, предохранителями, электронной защитой от переразряда. Полностью безопасные ЛИТ с SOСl2 пока не созданы.

  • Выраженный начальный «провал напряжения» после длительного хранения (особенно после высокотемпературного хранения).

Причина «провала напряжения» – образование на поверхности лития толстой защитной пленки, обладающей большим сопротивлением, т.к. слагающие ее вещества обладают очень низкой электропроводностью, практически это диэлектрики. После включения тока под его действием толстая пленка разрушается, но этот процесс может длиться несколько минут. В течение периода разрушения пленки элемент оказывается практически неработоспособным, его напряжение может упасть до нуля, как показано на рисунке, где крупно изображен начальный фрагмент разрядной кривой.


«Провал напряжения» на разрядной кривой Li│SOCl2-элемента (схематично).

Каталог: sites -> default -> files -> textdocsfiles -> 2014
2014 -> Вечные вопросы в романе М. А. Булгакова «Мастер и Маргарита»
2014 -> Золотая пропорция в рекламе
2014 -> Рабочая программа дисциплины Полимеры в развитии общества Направление подготовки 020100 Химия Профиль подготовки
2014 -> Рабочая программа дисциплины
2014 -> Законные основания и моральные нормы пересадки внутренних органов в современной России
2014 -> Рабочая программа дисциплины Полимеры медико-биологического назначения Направление подготовки 020100 Химия Профиль подготовки
2014 -> Программа вступительного экзамена в магистратуру по направлению «011200 Физика»
2014 -> Н. Г. Чернышевского адаптация личности в современном мире межвузовский сборник


Поделитесь с Вашими друзьями:
1   2   3   4   5


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

    Главная страница