Ii спортивная физиология является как учебной, так и научной дисциплиной


ПРИНЦИПЫ И МЕТОДЫ ТЕСТИРОВАНИЯ ФИЗИЧЕСКОЙ РАБОТОСПОСОБНОСТИ



страница5/16
Дата23.04.2016
Размер1.04 Mb.
1   2   3   4   5   6   7   8   9   ...   16

5.2. ПРИНЦИПЫ И МЕТОДЫ ТЕСТИРОВАНИЯ ФИЗИЧЕСКОЙ РАБОТОСПОСОБНОСТИ

Определение уровня физической работоспособности у человека осуществляется путем применения тестов с максимальными и субмаксимальными мощностями физических нагрузок. Все тесты, о которых в дальнейшем пойдет речь, хорошо и подробно изложены в специальных пособиях В.Л. Карпмана с соавторами, 1988; И.А. Аулика, 1990 и др., и в данном разделе они не будут детально рассматриваться, а будут изложены лишь общие принципы тестирования и их физиологическая характеристика.

Таблица 6

Схема оценки работоспособности



Периоды работоспособности

Субъективное состояние

Клинико-физиологические показатели

Психофизиологические показатели

Профессиональная работоспособность

Функциональное состояние организма

Степень снижения работоспособности по интегральному критерию

Врабатывание

Улучшается

Улучшаются

Улучшаются

Улучшается

Нормальное состояние утомления

До 16%

Стабильная работоспособность

Хорошее

Устойчивость показателей

Устойчивость показателей

Сохраняется на стабильном уровне







Неустойчивая работоспособность

Ухудшается

Разнонаправленные сдвиги вегетативных функций. Ухудшение показателей функциональных проб

Разнонаправленные сдвиги показателей; некоторые константы не изменяются

Незначительное снижение

Переходное состояние

16-19%

Прогрессирующее снижение работоспособности

Постоянное ощущение усталости, не проходящее после дополнительного отдыха

Однонаправленное ухудшение всех показателей, величины которых могут выходить за пределы физиологических колебаний. При функциональных пробах – значительное снижение показателей, а также появление атипичных реакций

Однонаправленное ухудшение всех показателей. Признаки неврастенических состояний

Выраженное снижение, появление грубых ошибок в работе

Патологическое состояние переутомления

Более 19%

В тестах с максимальными мощностями физических нагрузок испытуемый выполняет работу с прогрессивным увеличением ее мощности до истощения (до отказа). К числу таких проб относят тест Vita Maxima, тест Новакки и др. Применение этих тестов имеет и определенные недостатки: во-первых, пробы небезопасны для испытуемых и потому должны выполняться при обязательном присутствии врача, и, во-вторых, момент произвольного отказа – критерий очень субъективный и зависит от мотивации испытания и других факторов.

Тесты с субмаксимальной мощностью нагрузок осуществляются с регистрацией физиологических показателей во время работы или после ее окончания. Тесты данной группы технически проще, но их показатели зависят не только от проделанной работы, но и от особенностей восстановительных процессов. К их числу относятся хорошо известные пробы С.П. Летунова, Гарвардский степ-тест, тест Мастера и др. Принципиальная особенность этих проб заключается в том, что между мощностью мышечной работы и длительностью ее выполнения имеется обратно пропорциональная зависимость, и с целью определения физической работоспособности для таких случаев построены специальные номограммы.

В практике физиологии труда, спорта и спортивной медицины наиболее широкое распространение получило тестирование физической работоспособности по ЧСС. Это объясняется в первую очередь тем, что ЧСС является легко регистрируемым физиологическим параметром. Не менее важно и то, что ЧСС линейно связана с мощностью внешней механической работы, с одной стороны, и количеством потребляемого при нагрузке кислорода – с другой.

Анализ литературы, посвященной проблеме определения физической работоспособности по ЧСС, позволяет говорить о следующих подходах. Первый, наиболее простой, заключается в измерении ЧСС при выполнении физической работы какой-то определенной мощности (например, 1000 кГм∙мин-1). Идея тестирования физической работоспособности в данном случае состоит в том, что выраженность учащения сердцебиения обратно пропорциональна физической подготовленности человека, т.е. чем чаще сердечный ритм при нагрузке такой мощности, тем ниже работоспособность человека, и наоборот.

Второй подход состоит в определении той мощности мышечной работы, которая необходима для повышения ЧСС до определенного уровня. Такой подход является наиболее перспективным. Вместе с тем он технически более сложен и требует серьезного физиологического обоснования.

Сложности физиологического обоснования такого подхода к тестированию физической работоспособности обусловлены несколькими моментами: возможными предпатологическими изменениями сердечно-сосудистой системы; различными типами кровообращения, при которых одинаковое кровоснабжение мышц может обеспечиваться различной величиной ЧСС; неодинаковой физиологической ценой учащения сердечной деятельности при физических нагрузках, определяемой так называемым законом исходных величин и т. д.

Среди спортсменовэти различия в значительной степени сглаживаются сходством возраста, хорошим здоровьем, тенденцией к брадикардии в покое, расширением функциональных резервов сердечно-сосудистой системы и возможностей их использования при физических нагрузках, Это обстоятельство, по-видимому, определило использование в современном спорте теста PWC170 (PWC – это первые буквы английского термина «физическая работоспособность» – Physical Working Capacity), который ориентирован на достижение определенной ЧСС (170 сердечных сокращений в 1 минуту). Испытуемому предлагается выполнение на велоэргометре или в степ-тесте 2-х пятиминутных нагрузок умеренной мощности с интервалом 3 мин, после которых измеряют ЧСС. Расчет показателя PWC, та производится по следующей формуле:



PWC170 = W2+(W2-W1)

170-f1

f2-f1

где: W1 и W2 – мощность первой и второй нагрузки;

f1 и f2 – ЧСС в конце первой и второй нагрузки.


В настоящее время считается общепринятым, что ЧСС равная 170 уд.мин-1, с физиологической точки зрения характеризует собой начало оптимальной рабочей зоны функционирования кардиореспираторной системы, а с методической – начало выраженной нелинейности на кривой зависимости ЧСС от мощности физической работы. Существенным физиологическим доводом в пользу выбора уровня ЧСС в данной пробе служит и тот факт, что при частоте пульса больше 170 уд.мин-1 рост минутного объема крови если и происходит, то уже сопровождается относительным снижением систолического объема крови.

Проба PWC170 рекомендована Всемирной организацией здравоохранения для оценки физической работоспособности человека. Перспективы использования этой пробы в спорте очень широки, так как принцип ее пригоден для определения как общей, так и специальной работоспособности спортсменов.

Другой широко распространенной пробой является разработанный в США Гарвардский степ-тест. Этот тест рассчитан на оценку работоспособности у здоровых молодых людей, так как от исследуемых лиц требуется значительное напряжение. Гарвардский тест заключается в подъемах на ступеньку высотой 50 см для мужчин и 41 см для женщин в течение 5 минут в темпе 30 подъемов в 1 мин (2 шага в 1 с). После окончания работы в течение 30 с второй минуты восстановления подсчитывают количество ударов пульса и вычисляют индекс Гарвардского степ-теста (ИГСТ) по формуле:


ИГСТ=

Продолжительность работы (с) • 100

5.5 • Число ударов пульса (с-1)

Более точно можно рассчитать ИГСТ, если пульс считать 3 раза – в первые 30 секунд 2-й, 3-й и 4-й минут восстановления. В этом случае ИГСТ вычисляют по формуле:



ИГСТ=

t • 100

(f1 + f2 + f3) • 2

где: t - время восхождения на ступеньку (с),

f1, f2, f3 - число пульсовых ударов за 30 с 2-й, 3-й и 4-й мин восстановления.


Оценку работоспособности проводят по таблице 7.

Одним из распространенных и точных методов является определение физической работоспособности по величине максимального потребления кислорода (МПК). Этот метод высоко оценивает Международная биологическая программа, которая рекомендует для оценки физической работоспособности использовать информацию о величине аэробной производительности.

Как известно, величина потребляемого мышцами кислорода эквивалентна производимой ими работе. Следовательно, потребление организмом кислорода возрастает пропорционально мощности выполняемой работы. МПК характеризует собой то предельное количество кислорода, которое может быть использовано организмом в единицу времени.

Таблица 7

Оценка физической работоспособности по индексу Гарвардского степ-теста (по: Аулик И. В., 1979)


ИГСТ

Оценка

55

55-64


65-79

80-89


90

Слабая

Ниже средней

Средняя

Хорошая


Отличная

Аэробная возможность (аэробная мощность) человека определяется прежде всего максимальной для него скоростью потребления кислорода. Чем выше МПК, тем больше (при прочих равных условиях) абсолютная мощность максимальной аэробной нагрузки. МПК зависит от двух функциональных систем: кислород-транспортной системы (органы дыхания, кровь, сердечно-сосудистая система) и системы утилизации кислорода, главным образом – мышечной.

Максимальное потребление кислорода может быть определено с помощью максимальных проб (прямой метод) и субмаксимальных проб (непрямой метод). Для определения МПК прямым методом используются чаще всего велоэргометр или тредбан и газоанализатры. При применении прямого метода от испытуемого требуется желание выполнить работу до отказа, что не всегда достижимо. Поэтму было разработано несколько методов непрямого определения МПК, основанных на линейной зависимости МПК и ЧСС при работе определенной мощности. Эта зависимость выражается графически на соответствующих номограммах. В дальнейшем обнаруженная взаимосвязь была описана простым линейным уравнением, широко используемым с научно-прикладными целями для нетренированных лиц и спортсменов скоростно-силовых видов спорта:

МПК=1,7 РWС170 + 1240.


Для определения МПК у высококвалифицированных спортсменов циклических видов спорта В.Л. Карпман (1987) предлагает следующую формулу:

МПК = 2,2 PWCI70 + 1070.

По мнению автора, и PWC170 и МПК примерно в равной степени характеризуют физическую работоспособность человека: коэффициент корреляции между ними очень высок (0.7-0.9 по данным различных авторов), хотя взаимосвязь этих показателей и не носит строго линейного характера. Тем не менее, названные константы могут быть рекомендованы в практических целях для анализа тренировочного процесса.
5.3. СВЯЗЬ ФИЗИЧЕСКОЙ РАБОТОСПОСОБНОСТИ С НАПРАВЛЕННОСТЬЮ ТРЕНИРОВОЧНОГО ПРОЦЕССА В СПОРТЕ

Определение физической работоспособности по тесту PWC170 широко вошло в практику спортивной физиологии и медицины. В связи с этим повысилась актуальность вопроса о диагностическом и прогностическом значении теста, о том в какой мере этот неспецифический показатель может быть использован для поиска оптимального тренировочного процесса спортсменов различной специализации.

К настоящему времени имеется достаточное количество исследований этого вопроса. В общей форме ответ наметился уже при анализе антропометрических данных спортсменов, которые довольно тесно сопряжены с направленностью тренировочного процесса. Так, В.Л. Карпман и соавторы (1988) высказали предположение (и подтвердили его простыми формулами для боксеров и борцов) о линейной зависимости между массой тела и абсолютными величинами PWCI70. Вместе с тем они отметили, что относительные значения (в расчете на 1 кг веса) с нарастанием массы тела даже имеют тенденцию к снижению, по-видимому, за счет увеличения жировой ткани (баскетболисты, ватерполисты). А наибольшие относительные величины PWC170 наблюдаются у спортсменов, тренирующих качество выносливости. Для борцов и боксеров В.Л. Карпман с соавторами (1988) предложил следующие формулы:

PWC170 (для боксеров) = 15.0 Р + 300,

PWC170 (для борцов) = 19.0 Р + 50, где: Р - масса тела.

Возможно, спортивная практика и подтверждает такую закономерность, но раскрыть физиологическую сущность ее с помощью данных формул не представляется возможным.

Выяснено, что спортсмены скоростно-силовой группы (борцы, боксеры, гимнасты) отстают по показателям PWC170 и МПК даже от менее квалифицированных лыжников, гребцов, футболистов. Физическая работоспособность высококвалифицированных лыжников выше, чем бегунов как в обычных условиях, так и в «климатической» камере при температуре +40°С, а затем на «высоте» 3000м.

Универсальная зависимость ЧСС от мощности работы позволяет в циклических видах спорта оценивать специальную работоспособность по сдвигам ЧСС в определенном диапазоне (методом телепуль-сометрии) и по скорости перемещения спортсмена.

Необходимо также коснуться одной методической стороны теста PWC170, которая обозначалась и при анализе собственного материала и на которую, по нашему мнению, пока обращается недостаточное внимание. Это – вопрос о специфичности для спортсмена самой тестовой нагрузки. Очевидно, что работа на тредбане или велоэргометре будет более привычной (и более экономной) для велосипедистов, бегунов, лыжников, чем для спортсменов других специализаций. Возможно, что с этим частично связаны и упоминавшиеся уже различия параметров физической работоспособности между группой боксеров, борцов, гимнастов и группой лыжников, гребцов, футболистов. Некоторые авторы считают общепринятый тест PWC170 недостаточно информативным для ряда видов спорта и предлагают раздельное выполнение нагрузки как ногами, так и руками, указывая что соотношение физической работоспособности нижних и верхних конечностей претерпевает существенные возрас­тные изменения.
5.4. РЕЗЕРВЫ ФИЗИЧЕСКОЙ РАБОТОСПОСОБНОСТИ

Актуальность данного раздела обусловлена тем, что современные высшие спортивные достижения невозможны без максимального напряжения физических и духовных сил человека. Следовательно, знание этих закономерностей необходимо как тренеру, физиологу и спортивному врачу, так и самому спортсмену.

Общефизиологическое значение этой проблемы состоит в том, что на примере спортивной деятельности она раскрывает значение пластичности нервной системы как для реакций срочной адаптации, так и для формирования сложных функциональных систем долговременного значения (Павлов И.П., Орбели Л.А., Анохин П.К.). Если при этом учесть высказанную еще И. М. Сеченовым мысль об универсальности мышечного сокращения, как важнейшего жизненного акта, то становится очевидным, что проблема резервов физической работоспособности сопряжена со многими фундаментальными законами общей физиологии человека.

Наиболее важной характеристикой резервных возможностей организма является адаптационная сущность, эволюционно выработанная способность организма выдерживать большую, чем обычно нагрузку (Бресткин М.П., 1968). Исследование физической работоспособности спортсмена (особенно высшей квалификации) дает уникальный фактический материал для оценки и анализа функций организма в зоне видовых предельных напряжений. Поэтому можно считать, лимитирующими факторами физической работоспособности спортсмена являются индивидуальные пределы использования им своих структурно-функциональных резервов различных органов и систем. В таблице 8 (данные различных авторов) представлены основные сведения по характеристике функциональных резервов при физической работе разной мощности. Из материалов этой таблицы следует, что основными резервами являются функциональные возможности ЦНС, нервно-мышечного аппарата, кардиореспираторной системы, метаболические и биоэнергетические процессы. Очевидно, что при различных мощностях работы и в разных видах спорта степень участия этих систем будет неодинаковым.

При работе максимальной мощности ввиду ее кратковременности главным энергетическим резервов являются анаэробные процессы (запас АТФ и КрФ, анаэробный гликолиз, скорость ресинтеза АТФ), а функциональным резервом – способность нервных центров поддерживать высокий темп активности, сохраняя необходимые межцентральные взаимосвязи. При этой работе мобилизуются и расширяются резервы силы и быстроты.

При работе субмаксимальной мощности биологические активные вещества нарушенного метаболизма в большом количестве поступают в кровь. Действуя на хеморецепторы сосудов и тканей, они рефлекторно вызывают максимальное повышение функций сердечнососудистой и дыхательной систем. Еще большему повышению системного артериального тонуса способствуют вазодилятаторы гипоксического происхождения, способствующие одновременно увеличению капиллярного кровотока.

Функциональными резервами при работе субмаксимальной мощности являются буферные системы организма и резервная щелочность крови – важнейшие факторы, тормозящие нарушение гомеостаза в условиях гипоксии и интенсивного гликолиза; дальнейшее усиление работы кардио-респираторной системы. Значимым остается гликолитический вклад в биоэнергетику работающих мышц и выносливость нервных центров к интенсивной работе в условиях недостатка кислорода.

При работе большой мощности физиологические резервы в общем те же, что и при субмаксимальной работе, но первостепенное значение имеют следующие факторы: поддержание высокого (околопредельного) уровня работы кардиореспираторной системы; оптимальное перераспределение крови; резервы воды и механизмов физической терморегуляции. Ряд авторов энергетическими резервами такой работы считают не только аэробные, но и анаэробные процессы, а также метаболизм жиров.

При работе умеренной мощности резервами служат пределы выносливости ЦНС, запасы гликогена и глюкозы, а также жиры и процессы глюконеогенеза, интенсивно усиливающиеся при стрессе. К важным условиям длительного обеспечения такой работы относят и резервы воды и солей и эффективность процессов физической терморегуляции.

Таблица 8

Функциональные резервы при физической работе различной мощности

Мощность работы

Авторы

Максимальная

Субмаксимальная

Большая

Умеренная




Гликолиз, АТФ, КрФ; резервы нервно-мышечной системы

Буферные системы, нейрогуморальная регуляция функций по поддержанию гомеостаза

Резервы кардиореспираторной системы, глюкозы, аэробных процессов и гомеостаза

Резервы водно-солевого обмена, глюкозы; глюконеогенез, использование жиров

А.С. Мозжухин, 1979

Запасы АТФ и КрФ

Аэробно-анаэробный обмен, глюкоза

Аэробно- анаэробный обмен, гликоген мышц

Аэробный обмен; глюкоза крови, запасы гликогена

Н.А. Степочкина, 1984

Анаэробный обмен; запасы АТФ и КрФ

Анаэробный обмен, потребление кислорода

Усиление функций кардиореспираторной системы, аэробный обмен

Аэробный обмен, ограниченные энерготраты

Н.А. Фомин, 1984

Фосфагенная энергетическая система

Аэробно-анаэробный обмен, резервы кардиореспираторной системы

Аэробно-анаэробный обмен, запасы глюкозы и гликогена

Резервы глюкозы, гликогена; использование жиров; емкость окислительной системы

Я.М. Коц, 1986

Алактатный энергетический резерв

Лактатный энергетический резерв

Резервы аэробно-анаэробного обмена

Резервы окислительного фосфорилирования, использование жиров

В. М. Калинин,

1992

Общие сведения о резервных возможностях различных звеньев системы транспорта кислорода представлены в таблице 9. Из таблицы 9 видно, что наибольшим (двадцатикратным) резервом адаптации обладает система внешнего дыхания. Но даже при таких ее функциональных возможностях она может вносить определенный вклад в ограничение физической работоспособности спортсмена (Гандельсман А. Б., 1980; Пономарев В. П., 1981, и др.).

Аппарат кровообращения занимает особое место, поскольку явля­ется основным лимитирующим звеном транспорта кислорода. Кроме того, сердечно-сосудистая система служит тонким индикатором цены адаптации организма к различным факторам внешней среды и к физическим нагрузкам. Об этой же ее роли свидетельствуют формирование так называемого «спортивного сердца» и участившиеся в последнее время предпатологические и патологические изменения функции сердца при высоких спортивных нагрузках. К числу таких изменений можно отнести нарушения сердечного ритма, возникновение синдрома дистрофии миокарда вследствие физического перенапряжения и другие сдвиги.

Таблица 9

Предельные сдвиги в висцеральных системах при мышечной работе (по В.П. Загрядскому, 3.К. Сулимо-Самуйлло, 1976)



Показатели

В покое

При физической работе

Кратность изменений

Частота сердечных










сокращений в мин.

70

220

3

Артериальное давление,










мм рт. ст., систолическое

120

200

2

Артериальное давление,










диастолическое

80

40

2

Артериальное давление,










пульсовое

40

160

4

Ударный объем крови, мл

60

180

3

Минутный объем крови, л

4.5

40

8

Артерио-венозная разница










по кислороду, об.%

4

16

4

Частота дыхания в мин.

10

60

6

Глубина дыхания, л

0.5

5

10

Минутный объем дыхания, л

6

120

20

Потребление кислорода, л▪мин-1

0.25

5

20

Выделение углекислого газа,










л•мин-1

0.2

4

20

В таблице 10 показано, что сердечно-сосудистая система обладает мощным резервом перераспределения кровотока, и по его суммарной мощности на первом месте стоит скелетная мускулатура.

Таблица 10

Распределение кровотока в покое и при физических нагрузках различной интенсивности (по Н.М. Амосову и Н.А. Брендету, 1975)



Органы

Покой

Физическая нагрузка

Легкая

Средняя

Тяжелая

Мл▪мин-1

%

Мл▪миг-1

%

Мл▪мин-1

%

Мл▪мин-1

%

Органы брюшной

























полости

1400

24

1100

12

600

3

300

1

Почки

1100

19

900

10

600

3

250

1

Мозг

750

13

750

8

850

4

750

3

Сердце

250

4

350

4

750

4

1000

4

Скелетная

























мускулатура

1200

21

4500

47

12500

71

22000

88

Кожа

500

9

1500

15

1900

12

600

2

Другие органы

600

10

400

4

400

3

100

1

Итого

5800

100

9500

100

17500

100

25000

100

Среди всех органов и тканей мышцы занимают главенствующее положение по своему влиянию на центральную гемодинамику. Это объясняется большой массой скелетных мышц (около 40% массы тела) и их способностью к быстрому изменению уровня функциональной активности в широких пределах: в состоянии покоя кровоток в поперечно-полосатых мышцах составляет 15-20% от минутного объема крови (МОК), а при тяжелой работе он может достигать 80-85% от МОК.

В нашу задачу не входил анализ биохимических основ физической работоспособности спортсменов. Этой проблеме посвящены многие работы биохимиков спорта. Но есть два биохимических аспекта, без которых невозможно рассматривать физиологические резервы работоспособности человека. Во-первых, это биоэнергетическое обеспечение мышечного сокращения, которое выступает в роли резервного фактора при нагрузке различной мощности и направленности физической работы. Второй аспект – это регулирующая роль метаболитов, образующихся при мышечной деятельности, которые являются пусковым звеном (через хеморецепторы) централизации кровообращения, препятствующей нарушению тонуса сосудов. Сдвиги биохимических констант при напряженной мышечной работе (метаболический ацидоз, гипоксия и гипоксемия, гиперкапния) являются также важнейшими факторами рефлекторной и гуморальной регуляции различных звеньев кардиореспираторной системы, включая дыхательный и сосудодвигательный центры.

Все перечисленное выше функциональные резервы физической работоспособности должны рассматриваться не изолированно, а во временной, динамической взаимосвязи. Поэтому построение и тренировочного процесса и восстановительных мероприятий и реабилитации должно быть тоже динамическим и комплексным, учитывающим разнообразие адаптивных перестроек в организме спортсмена при физических нагрузках и закономерную последовательность их включения и функционирования на всех этапах его жизнедеятельности.


Каталог: DocLib9 -> %D0%A3%D1%87%D0%B5%D0%B1%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D0%B8%D1%8F
%D0%A3%D1%87%D0%B5%D0%B1%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D0%B8%D1%8F -> Тест на мотивацию к отказу от курения и его практическое
%D0%A3%D1%87%D0%B5%D0%B1%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D0%B8%D1%8F -> Химия и обмен нуклеиновых кислот
DocLib9 -> Сценарий внеклассного занятия по теме: «Азбука зелёных лекарств Костромской области»
DocLib9 -> Лат immunis свободный, избавленный от чего-либо специфическая профилактика заразных болезней людей и животных
DocLib9 -> Классное родительское собрание «За здоровый образ жизни» Цель
DocLib9 -> 1. Взаимосвязь пластического и энергетического обмена веществ
DocLib9 -> Памятка Что делать, если укусил клещ
%D0%A3%D1%87%D0%B5%D0%B1%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D0%B8%D1%8F -> Обмен сложных белков обмен нуклеопротеинов
%D0%A3%D1%87%D0%B5%D0%B1%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D0%B8%D1%8F -> Биохимия крови


Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   ...   16


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

    Главная страница