Ii спортивная физиология является как учебной, так и научной дисциплиной


ФИЗИОЛОГИЧЕСКИЕ РЕЗЕРВЫ ВЫНОСЛИВОСТИ



страница9/16
Дата23.04.2016
Размер1.04 Mb.
1   ...   5   6   7   8   9   10   11   12   ...   16

9.3.3. ФИЗИОЛОГИЧЕСКИЕ РЕЗЕРВЫ ВЫНОСЛИВОСТИ

Физиологические резервы выносливости включают в себя:

мощность механизмов обеспечения гомеостаза — адекватная деятельность сердечно-сосудистой системы, повышение кислородной емкости крови и емкости ее буферных систем, совершенство регуляции водно-солевого обмена выделительной системой и регуляции теплообмена системой терморегуляции, снижение чувствительности тканей к сдвигам гомеостаза;

тонкая и стабильная нервно-гуморальная регуляция механизмов поддержания гомеостаза и адаптация организма к работе в измененной среде (так называемому гомеокинезу).

Развитие выносливости связано с увеличением диапазона физи­ологических резервов и большими возможностями их мобилиза­ции. Особенно важно развивать в процессе тренировки способ­ность к мобилизации функциональных резервов мозга спортсмена в результате произвольного преодоления скрытого утомления. Бо­лее длительное и эффективное выполнение работы связано не столько с удлинением периода устойчивого состояния, сколько с ростом продолжительности периода скрытого утомления. Волевая мобилизация функциональных резервов организма позволяет за счет повышения физиологической стоимости работы сохранять ее рабочие параметры — скорость локомоции, поддержание заданных углов в суставах при статическом напряжении, силу сокращения мышц, сохранение техники движения.
9.4. ПОНЯТИЕ О ЛОВКОСТИ И ГИБКОСТИ; МЕХАНИЗМЫ И ЗАКОНОМЕРНОСТИ ИХ РАЗВИТИЯ

Ловкость и гибкость относят к числу основных физических качеств. Ловкость достаточно хорошо развивается в процессе индивидуальной жизни человека, в том числе при спортив­ной тренировке. Качество ловкости представляет собой сложный комплекс способностей. В противоположность этому гибкость нахо­дится под значительным генетическим контролем и требуется тща­тельный отбор и раннее ее развитие в онтогенезе.

Ловкостью считают:

способность создавать новые двигательные акты и двигательные навыки;

быстро переключаться с одного движения на другое при изменении ситуации;

выполнять сложнокоординационные движения.

Таким образом, под ловкостью, с одной стороны, понимают опре­деленные творческие способности человека незамедлительно фор­мировать двигательное поведение в новых, необычных условиях, ас другой стороны, — координационные его возможности.

Критериями ловкости являются координационная сложность, точность движений и быстрое их выполнение. В основе этих спо­собностей лежатявления экстраполяции, хорошая ориентация в ве­роятностной среде, предвидение возможной будущей ситуации, быстрая реакция на движущийся объект, высокий уровень лабиль­ности и подвижности нервных процессов, умение легко управлять различными мышцами. В процессе тренировки для развития лов­кости требуется варьирование различных условий выполнения од­ного и того же двигательного действия, использование дополни­тельной срочной информации о результате движений, формирова­ние навыка быстрого принятия решений в условиях дефицита вре­мени.

Гибкость определяется как способность совершать движения в суставах с большой амплитудой, т. е. суставная подвижность. Она

зависит от способности к управлению двигательным аппаратом и его морфофункциональных особенностей (вязкости мышц, эластичнос­ти связочного аппарата, состояния межпозвоночныхдисков). Гиб­кость улучшается при разогревании мышц и ухудшается на холоде. Она снижается в сонном состоянии и при утомлении. Величина гибкости минимальна утром и достигает максимума к середине дня (12-17 час). Улучшение гибкости происходит, когда во время пред­стартового возбуждения повышается частота сердечных сокраще­ний, нарастает кровоток через мышцы и в результате разминка при­водит к их разогреванию.

Различают активную гибкость при произвольных движениях в суставах и пассивную гибкость — при растяжении мышц внеш­ней силой. Пассивная гибкость обычно превышает активную. У женщин связочно-мышечный аппарат обладает большей гибкос­тью по сравнению с мужчинами, им легче осваивать многие слож­ные упражнения на гибкость (например, поперечный шпагат). У лиц зрелого и пожилого возраста раньше всего снижается гиб­кость позвоночника, но гибкость пальцев и кисти сохраняется дольше всего.
10. ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ И ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ ДВИГАТЕЛЬНЫХ НАВЫКОВ

В процессе жизнедеятельности человека формируются различные двигательные умения и навыки, составляющие основу его поведения.


10.1. ДВИГАТЕЛЬНЫЕ УМЕНИЯ, НАВЫКИ И МЕТОДЫ ИХ ИССЛЕДОВАНИЯ

Основу технического мастерства спортсменов составляют двига­тельные умения и навыки, формирующиеся в процессе тренировки и существенно влияющие на спортивный результат. Считают, что эф­фективность спортивной техники за счет навыка повышается в цик­лических видах спорта на 10-25%, а в ациклических — еще более.


10.1.1. ДВИГАТЕЛЬНЫЕ УМЕНИЯ И НАВЫКИ

Двигательные умения — способность на моторном уровне справляться с новыми задачами поведения. Спортсмену необходимо умение мгновенно оценивать возникшую ситуацию, быстро и эф­фективно перерабатывать поступающую информацию, выбирать в условиях дефицита времени адекватную реакцию и формировать наиболее результативные действия. Эти способности в наибольшей мере проявляются в спортивных играх и единоборствах, которые от­носят к ситуационным видам спорта. В тех же случаях, когда отраба­тываются одни и те же движения, которые в неизменном порядке повторяются на тренировках и во время соревнований (особенно в стандартных или стереотипных видах спорта), умения спортсменов закрепляются в виде специальных навыков.

Двигательные навыки — это освоенные и упроченные действия, которые могут осуществляться безучастия сознания (ав­томатически) и обеспечивают оптимальное решение двигательной задачи.
10.1.2. ОСНОВНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Основные методы исследования двигательных навыков можно разделить на 2 группы: 1)описывающие внешнюю структуру движе­ний и 2) внутреннюю их структуру.

К первым относятся методы кино-, фото-, видео-, телесъемки движений, тензометрия, динамометрия, гониометрия, циклография и пр. Ко вторым — электрофизиологические методы: электроэнце­фалография, электромиография, запись Н — рефлексов и активнос­ти двигательных единиц. Комплексная оценка целостной структуры навыков осуществляется при одновременной регистрации биомеха­нических и физиологических показателей.
10.2. ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ФОРМИРОВАНИЯ ДВИГАТЕЛЬНЫХ НАВЫКОВ

В понимание физиологических механизмов двигательных навы­ков особый вклад внесли отечественные физиологи — И. П. Павлов, В. М. Бехтерев, А. А. Ухтомский, П. К. Анохин, Н. А.Бернштейн, А. Н. Крестовников, Н. В. Зимкин, В. С. Фарфельидр.


10.2.1. ФУНКЦИОНАЛЬНАЯ СИСТЕМА, ДОМИНАНТА, ДВИГАТЕЛЬНЫЙ ДИНАМИЧЕСКИЙ СТЕРЕОТИП

Любые навыки — бытовые, профессиональные, спортивные — не являются врожденными движениями. Они приобретены в ходе ин­дивидуального развития. Возникая в результате подражания, услов­ных рефлексов или по речевой инструкции, двигательные акты осу­ществляются специальной функциональной системой нервных цент-ров(АнохинП. К., 1975).Деятельность этой системы включает сле­дующие процессы: синтез афферентных раздражений (информации из внешней и внутренней среды), учет доминирующей мотивации (предпочтение действий), использование памятных следов (арсенала движений и изученных тактических комбинаций); формирование моторной программы и образа результата действий; внесение сенсор­ных коррекций в программу, если результат не достигнут.

Комплекс нейронов, обеспечивающих эти процессы, располагает­ся на различных этажах нервной системы, становясь доминантой, т. е. господствующим очагом в центральной нервной системе. Он подавля­ет деятельность посторонних нервных центров и, соответственно, лишних скелетных мышц (Ухтомский А. А., 1923). В результате дви­жения выполняются все более экономно, при включении лишь самых необходимых мышечных групп и лишь в те моменты, которые нуж­ны для его осуществления. Происходит экономизация энерготрат.

Порядок возбуждения ь доминирующих нервных центрах зак­репляется в виде определенной системы условных и безусловных рефлексов и сопровождающих их вегетативных реакций, образуя двигательный динамический стереотип (Павлов И. П.; Крестовни-ковА.Н., 1954). Каждый предшествующий двигательный акт в этой системе запускает следующий. Это облегчает выполнение целостно­го упражнения и освобождает сознание человека от мелочного конт­роля за каждым его элементом. Роль условно-рефлекторного меха-низма образования двигательных навыков доказывается, в частно­сти, тем, что выработанные навыки во многом угасают при переры­вах в тренировке (при отсутствии подкрепления). Однако двигательные навыки отличаются от классических слюнных услов­ных рефлексов, описанных И. П. Павловым (сенсорных или рефлек­сов 1 рода). Навыки, в основном, представляют условные рефлексы 2 рода — опера нтные или инструментальные условные рефлексы (Конорский Ю. М., 1970). В них новым отделом рефлекторной дуги является ее эффекторная часть, т. е. со­здается новая форма движения или новая комбинация из ранее осво-енныхдействий. Построение новой формы движений на основе име­ющихся элементов Н. В. Зимкин (1975) отнес к явлениям экстрапо­ляции (использования предшествующего опыта).


10.2.2. СТАБИЛЬНОСТЬ И ВАРИАТИВНОСТЬ КОМПОНЕНТОВ ДВИГАТЕЛЬНОГО НАВЫКА

Возникшие в первой половине XX века представления о доми­нанте, функциональной системе и двигательном динамическом сте­реотипе легли в основу понимания механизмов формирования дви -гательных навыков в процессе обучения человека. Дальнейшие ис­следования позволили уточнить эти классические представления.

Уже Н. А. Бернштейн отмечал, что даже достаточно простые навы-ковые действия не являются полностью стереотипными. При много­кратных повторениях они могут различаться по амплитуде, скорости выполнения отдельных элементов и т. д. Как оказалось, еще больше они различаются повнутренней структуре. Многоканальная регист­рация ЭМ Г различных мышц при выполнении спортивных упраж­нений показала, что в одних и тех же освоенных движениях значи -тельно варьирует состав активных мышечных групп. Одни мышцы включаются вдвижения постоянно, а другие — лишь периодически (табл. 12). Варьируют длительность фаз, мышечные усилия, после­довательность включения мышц. Это позволило говорить о законо­мерной вариативности внешних и внутренних компонентов двига­тельного навыка (Зимкин Н. В., 1975). Наличие вариаций позволяет отбирать оптимальные и отбрасывать неадекватные моторные программы, учитывать не только внешние изменения ситуации, но и со­кратительные возможности мышц. Вариативность особенно выра­жена в периоды врабатывания, перед отказом от работы и в восстано­вительном периоде. Регистрация активности отдельных нейронов головного мозга (в экспериментах на животных и в клинике при ле­чебных мероприятиях) показала значительную вариативность их включения в одни и те же освоенные действия. При этом между ними образуются как «жесткие» (стабильные), так и «гибкие» (вариативные) связи (Бехтерева Н. П., 1980).

Сохранение основных черт двигательного навыка в условиях из меняющейся внешней среды и перестроек внутренней среды орга­низма возможно лишь при варьировании «гибких» связей в системе управления движениями. Так, хорошо освоенный навык ходьбы осуществляется при разном наклоне туловища, переменных усилиях ног, неодинаковом составе скелетных мышц и нервных центров, раз­личных вегетативных реакциях в зависимости от рельефа дороги, ка­чества грунта, силы встречного ветра, степени отягощения, утомле­ния человека и прочих причин. «Гибкие» элементы функциональ­ной системы составляют основную ее часть, так как в любых услови­ях они обеспечивают выполнение навыка, достижение требуемого результата.

Таблица 12 - Стабильность и вариативность включения различных мышц у квалифицированного тяжелоатлета при многократных рывках штанги

(по:Н.В. Зимкин, 1973)

Мышцы

Наличие активности (+) при десяти повторных рывках



8 9 10

Четырехглавая мышца бедра,

наружн.

То же, средний пучок



То же, внутренний пучок

Длинная спины

Дельтовидная, средний пучок

Трехглавая плеча

Трапециевидная

Двуглавая плеча

Икроножная

Двуглавая бедра

Ягодичная

Широчайшая спины

Дельтовидная, передний пучок

Большая грудная


Навыки циклических движений более стабильны по сравнению с ациклическими, так как в их основе лежат повторения одинаковых циклов:

Элементы циклических движений Элементы ациклических движений


1 —2—1—2—1—2... 1-2-3-4-5-6...

Циклические движения превращаются в навык при переходе от отдельных двигательных актов к последовательной их цепи — от от­дельных шагов к ходьбе и бегу, от начертания отдельных букв к письму и т. п. При этом к процессам коркового управления движе­ниями подключаются древние автоматизмы, такназываемые цикло­идные движения, осуществляемые подкорковыми ядрами головного

мозга.

Навыки в ситуационных видах спорта (спортивных играх, едино­борствах) отличаются наибольшей вариативностью. Стереотипы в этих видах спорта формируются лишь при овладении отдельными элементами техники (например, в штрафных бросках). Автоматиза­ция этих навыков позволяет быстрее включать их в новые движения. В стандартных видах спорта навыки более стереотипны. Их стабиль­ность повышается по мере роста спортивного мастерства. Нои здесь необходимо сохранение определенного уровня вариативности навы­ков для их адаптации к разным условиям выполнения.


10.3. ФИЗИОЛОГИЧЕСКИЕ ЗАКОНОМЕРНОСТИ И СТАДИИ ФОРМИРОВАНИЯ ДВИГАТЕЛЬНЫХ НАВЫКОВ

Процесс обучения двигательному навыку начинается с опреде­ленного побуждения к действию, которое задается подкорковыми и корковыми мотивационными зонами. У человека это, главным обра­зом, стремление к удовлетворению определенной социальной по­требности (любовь к данному виду спорта, желание им заниматься, преуспеть в упражнении и пр.). Оптимальный уровень мотиваций и эмоций способствуетуспешномуусвоению двигательной задачи и ее решению.


10.3.1. ЗАМЫСЕЛ И ОБЩИЙ ПЛАН ДЕЙСТВИЯ

На первом этапе формирования двигательного навыка возникает замысел действия, осуществляемый ассоциативными зонами коры больших полушарий (переднелобными и нижнетеменными). Они формируют общий план осуществления движения. Вначале это лишь общее представление о двигательной задаче, которое возникаетлибо при показе движения другим лицом (педагогом, тренером или опыт­ным спортсменом), либо после словесной инструкции, самоинструк­ции, речевого описания. В сознании человека создается определенный эталон требуемого действия, «модель потребного будущего» (Бернштейн НА., 1966). Эту функцию П. К.Анохин назвал «опере­жающее отражение действительности». Формирование такой на­глядно-образной модели складывается из образа ситуации в целом (задаваемые пространственные и временные характеристики двига­тельной задачи) и образа тех мышечных действий, которые необхо­димы для достижения цели. Имея представление о требуемой модели движения, человек может осуществить ее разными мышечными группами. Так, например, подпись человека имеет характерные чер­ты, независимо от мышечных групп, выполняющих ее (пальцы, кисть, предплечье, нога).

Особое значение имеют в этом процессе восприятие и переработ­ка зрительной информации (при показе) и слуховой (при рассказе). Опытные спортсмены быстрее формируют зрительный образ движе­ния, так как у них лучше выражена поисковая функция глаза, и они способны эффективно выделять наиболее важные элементы. У них богаче кладовая «моторной памяти» — хранящиеся в ней образы ос­военных движений, быстрее происходит извлечение нужных мотор­ных следов.
10.3.2. СТАДИИ ФОРМИРОВАНИЯ ДВИГАТЕЛЬНЫХ НАВЫКОВ

На втором этапе обучения начинается непосредственное выпол­нение разучиваемого упражнения. При этом отмечаются 3 стадии формирования двигательного навыка:

1)стадия генерализации (иррадиациивозбуждения),

2)стадия концентраци ии,

3)стадия стабилизации и автоматизации.

На первой стадии созданная модель становится основой для пере­вода внешнего образа во внутренние процессы формирования про­граммы собственных действий. Физиологические механизмы этого во многом неясны. На ранних этапах онтогенеза, когда речевая регу­ляция движений (внешней речью постороннего лица или внутрен­ней собственной речью) еще не развита, особенное значение имеют процессы подражания, общие у человека и животных. Наблюдая за действиями другого лица и имея некоторый опыт управления свои­ми мышцами, ребенок превращает свои наблюдения в программы собственных движений. Эти процессы аналогичны процессам освое­ния речи, которую ребенок сначала слышит от окружающих людей, а затем преобразует в собственную моторную речь (по терминологии психолога Л. С. Выготского, это — явление интериоризации, т. е. превращение внешней речи во внутреннюю).

Некоторые особенности программирования отражаются в межцент­ральных взаимосвязях электрической активности мозга. Можно видеть, например, что при наблюдении за выполнением бега посторон­ним лицом в коре больших полушарий у человека появляются потен­циалы в темпе этого бега (своеобразная модель наблюдаемого движе­ния). Подобные изменения ритмов мозга и специфические перестрой­ки пространственной синхронизации корковых потенциалов набл из­даются также при представлении и при мысленном выполнении движений. При этом пространственные взаимосвязи мозговой актив­ности начинают отличаться от состояния покоя и приближаться к та­ковым при реальном выполнении работы (табл. 13).

Таблица 13 - Появление сходства корковых функциональных систем при мысленном и реальном выполнении бега у спринтера 1 разряда (по данным корреляционного анализа ЭЭГ)






Исходное состояние

Мысленный бег

Реальный бег

А

6-7-4

4-3-5-2-7 6

4-3-5-2-7

В

1,2,3,5,8

1,8

1,6,8

Примечание:

1—8 — номера корковых зон,

А — плеяды взаимосвязанной (синхронной и синфазной) активности различных корковых зон с коэффициентами корреляции 0.7-1.0, В — независимые корковые зоны.

В процессах программирования используются имеющиеся у че­ловека представления о «схеме тела», без которых невозможна пра­вильная адресация моторных команд к скелетным мышцам в разн ых частях тела, и о «схеме пространства», обеспечивающие простран­ственную организацию движений. Нейроны, связанные с этими функциями, находятся в нижнетеменной ассоциативной области задних отделов коры больших полушарий. Организация движени й во времени, оценка ситуации, построение последовательности дви­гательных актов, их сознательная целенаправленность осуществля­ются передне-лобной ассоциативной корой. Только в ней имеются специальные нейроны кратковременной памяти, которые удержива­ют созданную программу от момента прихода в кору внешнего пус­кового сигнала (или от момента самоприказа) до момента осуществ­ления моторной команды.

Соответственно этому во время реальной работы можно видеть особую специфику мозговой активности, отражающую характерные черты двигательных программ (рис. 32). Так, у бегунов и конькобеж­цев как при воображаемом, так и при реальном выполнении бега по дорожке или на коньках, устанавливается сходство (пространствен­ная синхронизация) потенциалов передне-лобной (программирую­щей) области с моторными центрами ног, а у гимнастов при представ­лении и выполнении стойки на кистях — с моторными центрами рук. При стрельбе, бросках мяча в баскетбольное кольцо возникает сход­ство активности зрительных, нижнетеменных зон (ответственных за пространственную ориентацию движений) и моторных зон коры, что обеспечивает точность глазо-двигательных реакций. В процессе фехтования к этим зонам подключаются передне-лобные области, связанные с вероятностной оценкой текущей и будущей ситуации.

В создании моторных программ принимают участие многие ней­роны коры, мозжечка, таламуса, подкорковых ядер и ствола мозга. Обширное вовлечение множества мозговых элементов необходимо для поиска наиболее нужных из них. Этот процесс обеспечивается широкой иррадиацией возбуждения по различным зонам мозга и сопро­вождается обобщенным характером периферических реакций — их генерализацией. В силу этого первая стадия начинающихся попыток выполнить задуманное движение называется стадией генерализации. Она характеризуется напряжением большого числа активированных скелетных мышц, их продолжительным сокращением, одновремен ным вовлечением в движения мышц-антагонистов, отсутствием ин­тервалов в ЭМ Г во время расслабления мышц (рис. 33). Все это нару-шает координацию движений, делает их закрепощенными, приводит к значительным энерготратам и, соответственно, излишне выражен­ным вегетативным реакциям. На этой стадии наблюдаются особен­ное учащение дыхания и сердцебиения, подъем артериального давле­ния, резкие изменение состава крови, заметное повышение темпера­туры тела и потоотделения. Однако нет достаточной согласованности этих сдвигов между собой и их соответствия мощности и характеру работы.

Массированный поток афферентных импульсов от проприоре-цепторов многих мышц затрудняет отделение основных рабочих мы­шечных групп от посторонних. Анализ «темного» мышечного чув­ства еще более осложняется обильным притоком интероцепти вных сигналов — в первую очередь, от рецепторов дыхательной и сердеч­но-сосудистой систем. Требуются многократные повторения разу­чиваемого упражнения для постепенного совершенствования мотор­ной программы и приближения ее к заданному эталону.

На второй стадии формирования двигательного навыка проис­ходит концентрация возбуждения в необходимых для его осуществ­ления корковых зонах. В посторонних же зонах коры активность подавляется одним из видов условного внутреннего торможения — дифференцировочным торможением. В коре и подкорковых струк­турах создается мозаика из возбужденных и заторможенных ней­ронных объединений, что обеспечивает координированное выпол­нение двигательного акта. Включаются лишь необходимые мы­шечные группы и только в нужные моменты движения, что можно видеть на записях ЭМГ. В результате рабочие энерготраты снижа­ются.

Навык на этой стадии уже сформирован, но он еще очень непро­чен и нарушается при любых новых раздражениях (выступление на незнакомом поле, появление сильного соперника и т. д.). Эти воз­действия разрушают неокрепшую еще рабочую доминанту, едва установившиеся межцентральные взаимосвязи в мозгу вновь приво­дят к иррадиации возбуждения и потере координации.

На третьей стадии в результате многократного повторения на­выка в разнообразных условиях помехоустойчивость рабочейдоми-нанты повышается. Появляется стабильность и надежность навыка, снижается сознательный контроль за его элементами, т. е. возникает автоматизация навыка. Прочность рабочей доминанты поддерживается четкой сонастройкой ее нейронов на общий ритм корковой активности. Такое явление было названо А. А. Ухтомским усвоением ритма. При циклической работе ритм корковой активно­сти соответствуеттемпу выполняемого движения: в ЭЭГпоявляются потенциалы, соответствующие этому темпу «меченыеритмы» ЭЭТ— рис. 34 (Сологуб Е. Б., 1965). Внешние раздражения на этой стадии лишь подкрепляют рабочую доминанту, не разрушая ее. Большая же часть посторонних афферентных потоков не пропускается в спинной и головной мозг: специальные команды из вышележащих центров вызывают пресинаптическое торможение импульсов от периферических рецепторов, препятствуя их доступу в спинной мозги мированных программ от случайных влияний и повышается надеж­ность навыков.

Процесс автоматизации не означает выключения коркового конт­роля за выполнением движения. В коре работающего человека отмеча­ется появление связанных с движением потенциалов, специфичес­кие формы межцентральных взаимосвязей активности. Однако в этой системе центров по мере автоматизации снижается участие лоб­ных ассоциативных отделов коры, что, по-видимому, и отражает снижение его осознаваемости.


Каталог: DocLib9 -> %D0%A3%D1%87%D0%B5%D0%B1%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D0%B8%D1%8F
%D0%A3%D1%87%D0%B5%D0%B1%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D0%B8%D1%8F -> Тест на мотивацию к отказу от курения и его практическое
%D0%A3%D1%87%D0%B5%D0%B1%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D0%B8%D1%8F -> Химия и обмен нуклеиновых кислот
DocLib9 -> Сценарий внеклассного занятия по теме: «Азбука зелёных лекарств Костромской области»
DocLib9 -> Лат immunis свободный, избавленный от чего-либо специфическая профилактика заразных болезней людей и животных
DocLib9 -> Классное родительское собрание «За здоровый образ жизни» Цель
DocLib9 -> 1. Взаимосвязь пластического и энергетического обмена веществ
DocLib9 -> Памятка Что делать, если укусил клещ
%D0%A3%D1%87%D0%B5%D0%B1%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D0%B8%D1%8F -> Обмен сложных белков обмен нуклеопротеинов
%D0%A3%D1%87%D0%B5%D0%B1%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D0%B8%D1%8F -> Биохимия крови


Поделитесь с Вашими друзьями:
1   ...   5   6   7   8   9   10   11   12   ...   16


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

    Главная страница