Конкурс научных работ студентов Республики Беларусь по естественным и техническим наукам Девиз: «Теплопроводность»



Скачать 411.84 Kb.
страница1/3
Дата29.04.2016
Размер411.84 Kb.
Просмотров10
Скачиваний0
Размер411.84 Kb.
  1   2   3
Учреждение образования
Белорусский государственный университет

информатики и радиоэлектроники

Конкурс научных работ студентов Республики Беларусь

по естественным и техническим наукам


Девиз: «Теплопроводность»

Теплопроводность через сферическую оболочку.

Авторы:

Журавлёв Александр Анатольевич

Группа № 340101, курс 1

Факультет: РЭ БГУИР

Научный руководитель: Леонович Анатолий Александрович

Доцент, к-дат ф.-м. наук

Кафедра физики БГУИР

Минск 2004

Содержание:

1 Введение

2 Основные положения теплопроводности

2.1 Температурное поле

2.2 Градиент температуры

2.3 Основной закон теплопроводности

2.4 Дифференциальное уравнение теплопроводности

2.5 Краевые условия

2.6 Теплопроводность через шаровую стенку

Пример работы программы

3 Заключение

4 Список используемых источников

приложение 1м




Реферат

Объектом исследования является сферическая оболочка, которая заданна определённой толщиной с переменным коэффициентом теплопроводности и значениями температуры на внутренней и внешней поверхностях оболочки.

Цель работы — определить распределение температуры внутри оболочки.

Условияпространство между двумя сферами радиусы которых R1 и R2 (R1 < R2), температура которых Т1 и Т2, заполнено веществом, теплопроводность которого изменяется по закону (b=const), где r - радиус от центра сфер.

Задача — найти закон распределения температуры в этом веществе Т = Т(r).

В процессе работы выведено дифференциальное уравнение теплопроводности применительно к данным конкретным условиям задачи и получено решение этого уравнения в виде функции T(r), где T - температура в произвольной точке оболочки, а r - расстояние между этой точкой и геометрическим центром оболочки. Разработана программа, рассчитывающая функцию T(r) и строящая её график для различных задаваемых пользователем параметров задачи.

Результатом исследования является аналитическое решение уравнения теплопроводности T(r) и графическая иллюстрация этого решения, изображаемая на экране компьютера программой.

Сгорание топлива в топочных устройствах сопровождается образованием газов с высокой температурой, которые могут передавать большое количество теплоты. Поэтому роль теплообмена излучением в топках современных котлов весьма велика и общая передача теплоты излучением на стенки котельных труб доходит до 50% и больше от всей теплоты, выделяемой от сгорания топлива. Теплообмен излучением в топках по своей интенсивности во много раз превышает конвективный теплообмен при средних скоростях перемещения газов.

Процесс эффективного излучения и конвективного теплообмена происходит одновременно с процессом горения топлива. Что значительно усложняет изучение ирасчёт топок.

Полученная функция T(r) и разработанная программа могут быть полезными для разработчиков химических и ядерных реакторов, котлов тепловых станций и различных сосудов в области промышленной и бытовой техники.

Эта работа выполнена в текстовом редакторе Microsoft WORD 7.0.

стр. 3 рис . 4 ист.

1 Введение

В учении о теплообмене рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах. Эти процессы по своей физико-механической природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде целого комплекса разнородных явлений.

Перенос теплоты может осуществляться тремя способами: теплопроводностью, конвекцией и излучением, или радиацией. Эти формы глубоко различны по своей природе и характеризуются различными законами.

Процесс переноса теплоты теплопроводностью происходит между непосредственно соприкасающимися телами или частицами тел с различной температурой. Учение о теплопроводности однородных и изотропных тел опирается на весьма прочный теоретический фундамент. Оно основано на простых количественных законах и располагает хорошо разработанным математическим аппаратом. Теплопроводность представляет собой, согласно взглядам современной физики, молекулярный процесс передачи теплоты.

Известно, что при нагревании тела кинетическая энергия его молекул возрастает. Частицы более нагретой части тела, сталкиваясь при своем беспорядочном движении с соседними частицами, сообщают им часть своей кинетической энергии. Этот процесс постепенно распространяется по всему телу. Перенос теплоты теплопроводностью зависит от физических свойств тела, от его геометрических размеров, а также от разности температур между различными частями тела. При определении переноса теплоты теплопроводностью в реальных телах встречаются известные трудности, которые на практике до сих пор удовлетворительно не решены. Эти трудности состоят в том, что тепловые процессы развиваются в неоднородной среде, свойства которой зависят от температуры и изменяются по объему; кроме того, трудности возникают с увеличением сложности конфигурации системы.

Целью данной работы является нахождение закона распределения температуры в веществе, которым заполнено пространство между двумя сферами.

2 Основные положения теплопроводности

2.1 Температурное поле

 

Теплопроводность представляет собой процесс распространения энергии между частицами тела, находящимися друг с другом в соприкосновении и имеющими различные температуры.

Рассмотрим нагрев какого-либо однородного и изотропного тела. Изотропным называют тело, обладающее одинаковыми физическими свойствами по всем направлениям. При нагреве такого тела температура его в различных точках изменяется во времени и теплота распространяется от точек с более высокой температурой к точкам с более низкой. Из этого следует, что в общем случае процесс передачи теплоты теплопроводностью в твердом теле сопровождается изменением температуры T как в пространстве, так и во времени:

, (2.1)

где координаты точки; tвремя.

Эта функция определяет температурное поле в рассматриваемом теле. В математической физике температурным полем называют совокупность значений температуры в данный момент времени для всех точек изучаемого пространства, в котором протекает процесс.

Если температура тела есть функция координат и времени, то температурное поле называют нестационарным, т.е. зависящим от времени:

. (2.2)

Такое поле отвечает неустановившемуся тепловому режиму теплопроводности.

Если температура тела есть функция только координат и не изменяется с течением времени, то температурное поле тела называют стационарным:

. (2.3)

Уравнения двухмерного температурного поля для режима стационарного:

; (2.4)

нестационарного:

. (2.5)

На практике встречаются задачи, когда температура тела является функцией одной координаты, тогда уравнения одномерного температурного поля для режима стационарного:

; (2.6)

нестационарного:

. (2.7)

Одномерной, например, является задача о переносе теплоты в стенке, у которой длину и ширину можно считать бесконечно большой по сравнению с толщиной.

2.2 Градиент температуры

Если соединить точки тела с одинаковой температурой, то получим поверхность равных температур, называемую изотермической. Изотермические поверхности между собой никогда не пересекаются. Они либо замыкаются на себя, либо кончаются на границах тела.

Рассмотрим две близкие изотермические поверхности с температурами T и T + DT (рисунок 2.1).

 





Перемещаясь из какой либо точки А, можно обнаружить, что интенсивность изменения температуры по различным направлениям неодинакова. Если перемещаться по изотермической поверхности, то изменения температуры не обнаружим. Если же перемещаться вдоль какого-либо направления P, то наблюдаем изменение температуры. Наибольшая разность температур на единицу длины будет в направлении нормали к изотермической поверхности. Предел отношения изменения температуры к расстоянию между изотермами по нормали , когда стремится к нулю, называют градиентом температуры.

(2.8)

Градиент температуры есть вектор, направленный по нормали к изотермической поверхности в сторону возрастания температуры и численно равный частной производной от температуры по этому направлению. За положительное направление градиента принимается направление возрастания температур.
2.3 Основной закон теплопроводности

  Для распространения теплоты в любом теле или пространстве необходимо наличие разности температур в различных точках тела. Это условие относится и к передаче теплоты теплопроводностью, при которой градиент температуры в различных точках тела не должен быть равен нулю.

Связь между количеством теплоты , проходящим за промежуток времени через элементарную площадку dS, расположенную на изотермической поверхности, и градиентом температуры устанавливается гипотезой Фурье, согласно которой

. (2.9)

Минус в правой части показывает, что в направлении теплового потока температура убывает и grad T является величиной отрицательной. Коэффициент пропорциональности называется коэффициентом теплопроводности или более кратко - теплопроводностью. Справедливость гипотезы Фурье подтверждено многочисленными опытными данными, поэтому эта гипотеза в настоящее время носит название основного уравнения теплопроводности или закона Фурье.

Отношение количества теплоты, проходящего через заданную поверхность, ко времени называют тепловым потоком. Тепловой поток обозначают q и выражают в ваттах (Вт):

. (2.10)

Отношение теплового потока dq через малый элемент изотермической поверхности к площади dS этой поверхности называют поверхностной плотностью теплового потока (или вектором плотности теплового потока), обозначают j и выражают в ваттах на квадратный метр (Вт/м2):

. (2.11)

Вектор плотности теплового потока направлен по нормали к изотермической поверхности в сторону убывания температуры. Векторы j и grad T лежат на одной прямой, но направлены в противоположные стороны.

Тепловой поток q, прошедший сквозь произвольную поверхность S, находят из выражения

. (2.12)

Количество теплоты, прошедшее через эту поверхность в течение времени t, определяется интегралом

. (2.13)

Таким образом, для определения количества теплоты, проходящего через какую-либо произвольную поверхность твердого тела, необходимо знать температурное поле внутри рассматриваемого тела. Нахождение температурного поля и составляет основную задачу аналитической теории теплопроводности.


Поделитесь с Вашими друзьями:
  1   2   3


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал