Курс лекций по дисциплине «Пищевая химия» для бакалавров направления подготовки



Скачать 262.97 Kb.
страница1/7
Дата25.04.2016
Размер262.97 Kb.
ТипКурс лекций
  1   2   3   4   5   6   7

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Кафедра технологии хранения и переработки растениеводческой продукции

КРАТКИЙ КУРС ЛЕКЦИЙ

по дисциплине



«Пищевая химия»

для бакалавров направления подготовки



27.03.01 Стандартизация и метрология

Краснодар 2015

Лекция 1


Пищевая химия как дисциплина. Белки.

  1. Предмет, содержание и основные направления ПХ

  2. Функции белков в организме человека

  3. Обмен белков в организме человека. Периоды обновления и полужизни белков.

  4. Рекомендуемые нормы потребления белка. Белковый дефицит и пути его решения.

  5. Белково-калорийная недостаточность. Пищевые аллергии.



  1. Предмет, содержание и основные направления ПХ

Среди основных проблем, стоящих перед человеческим обществом в наше время, можно выделить несколько главных, превалирующих над всеми другими:

  • обеспечение населения земного шара продуктами питания;

  • обеспечение энергией;

  • обеспечение сырьем, в том числе водой;

  • охрана окружающей среды, экологическая и радиационная безопасность жителей планеты, замедление негативных последствий интенсивной производственной деятельности.

Среди этих проблем одной из самых важных и сложных является обеспечение населения земного шара продуктами питания. Продукты питания должны не только удовлетворять потребности человека в основных питательных веществах и энергии, но и выполнять профилактические и лечебные функции.

Под государственной политикой в области здорового питания понимается комплекс мероприятий, направленный на создание условий, обеспечивающих удовлетворение потребностей населения в рациональном здоровом питании с учетом его традиций, привычек, экономического положения, в соответствии с требованиями медицинской науки.

Последние десятилетия характеризуются стойким ухудшением показателей здоровья населения России: продолжает снижаться средняя продолжительность жизни (мужчины России живут меньше всех европейских мужчин, 62,5 года). Среди причин заболеваемости и смертности ведущее место занимают сердечнососудистые и онкологические заболевания, развитие которых в определенной степени связано с питанием. Снижается уровень грудного вскармливания, ухудшаются показатель здоровья и антропометрические характеристики детей, подростков, а также состояние здоровья лиц пожилого возраста. Одной из важнейших причин этого является неудовлетворительное питание.

У большинства населения России, по данным Института питания


РАМН, выявлены нарушения полноценного питания, обусловленные как недостаточным потреблением пищевых веществ, так и нарушением пищевого статуса населения России, в первую очередь недостатком витаминов, макро- и микроэлементов, полноценных белков, и не рациональным их соотношением. Важнейшие нарушения пищевого статуса населения России (по данным Института питания РАМН):

  • избыточное потребление животных жиров;

  • дефицит полиненасыщенных жирных кислот;

  • дефицит полноценных (животных) белков;

  • дефицит витаминов (аскорбиновой кислоты, рибофлавина (В2), тиамина (В1), фолиевой кислоты, ретинола (А) и β-каротина, токоферола и других);

  • дефицит минеральных веществ (кальция, железа);

  • дефицит микроэлементов (селена, цинка, йода, фтора);

  • дефицит пищевых волокон.

Технический прогресс в пищевой промышленности во многом определяется демографическими изменениями (численность населения, увеличение доли пожилых и больных людей), социальными изменениями, изменениями в условиях жизни и труда (рост численности городского населения, изменение характера труда, социальное расслоение общества). Он связан с достижениями медицины, фундаментальных наук (физика, химия, микробиология), новыми технологическими возможностями, которые появились у производителей продуктов питания в результате развития науки, технологии, техники, ухудшением экологической обстановки, жесткой конкуренцией на рынке продуктов питания.

Все это требует не только коренного совершенствования технологии получения традиционных продуктов, но и создания нового поколения пищевых продуктов, отвечающих возможностям и реалиям сегодняшнего дня. Это продукты со сбалансированным составом, низкой калорийностью, с пониженным содержанием сахара и жира и повышенным — полезных для здоровья ингредиентов, функционального и лечебного назначения, с увеличенным сроком хранения, быстрого приготовления и, конечно, совершенно безопасных для человека.



Пищевая химия — наука о химическом составе пищевых систем (сырье, полупродукты, готовые пищевые продукты), его изменениях в ходе технологического потока под влиянием различных факторов (физических, химических, биохимических и т. д.), включающих липид-белковое, липид-углеводное, белок-белковое, белок-углеводное взаимодействия, общих закономерностях этих превращений.

Она включает изучение взаимосвязи структуры и свойств пищевых веществ и ее влияние на свойства, и пищевую ценность продуктов питания. Пищевая химия также уделяет внимание методам выделения, фракционирования, очистки пищевых веществ (белков, углеводов, липидов и т.д.), их каталитической модификации. Неотъемлемой частью пищевой химии являются разделы, посвященные пищевым и биологически активным добавкам, загрязнителям пищевого сырья и продуктов.





  1. Функции белков в организме человека

Белки или протеины — высокомолекулярные азотсодержащие органические соединения, молекулы которых построены из остатков аминокислот.

Термин «протеины», введенный Барцелиусом в 1838 г., происходит от греческого слова proteios, означающего «первостепенный». Оно достаточно точно отражает главенствующее биологическое значение важнейшего класса соединений, которое заключается в обеспечении сложной иерархии молекулярной структуры и специфических функций живых организмов.

В природе существует примерно от 1010 до 1012 различных белков, составляющих основу 1,2х106 видов живых организмов, начиная от вирусов и заканчивая человеком. Огромное разнообразие белков обусловлено способностью 20 протеиногенных α-аминокислот взаимодействовать друг с другом с образованием полимерных молекул.

Расположение белковых молекул в пространстве определяет их биологические функции, главными из которых являются структурная (кератин волос, ногтей, коллаген соединительной ткани, эластин, муцины слизистых выделений), каталитическая (ферменты), транспортная (гемоглобин, миоглобин, альбумины сыворотки), защитная (антитела, фибриноген крови), сократительная (актин, миозин мышечной ткани), гормональная (инсулин поджелудочной железы, гормон роста) и резервная (овальбумин яйца, казеин молока,).

Резервная, или питательная, функция заключается в использовании белков в качестве источника аминокислот, расходующихся на синтез белков и других активных соединений, регулирующих процессы обмена, например, в развивающемся плоде или проростках растений. Подобного рода белки откладываются про запас в процессах созревания семян и жизнедеятельности животных. Поэтому их еще называют запасными. Запасные белки растительного происхождения, в соответствии с классификацией Осборна, относятся к классам проламинов (глиадин пшеницы, гордеин ячменя, зеин кукурузы) и глютелинов (оризенин риса, глютенин пшеницы). Такие белки достаточно широко распространены в природе и в относительно большом количестве входят в состав пищи и кормов животных.


  1. Обмен белков в организме человека. Периоды обновления и полужизни белков. Азотистый баланс.

Белки в питании человека занимают особое место. Они выполняют ряд специфических функций, свойственных только живой материи. Белковые вещества наделяют организм пластическими свойствами, заключающимися в построении структур субклеточных включений (рибосом, митохондрий и т. д.), и обеспечивают обмен между организмом и окружающей внешней средой. В обмене веществ участвуют как структурные белки клеток и тканей, так и ферментные и гормональные системы. Белки координируют и регулируют все, то многообразие химических превращений в организме, которое обеспечивает функционирование его как единого целого.

Все элементы клеток находятся в процессе обновления, при котором распад уравновешивается ресинтезом, то есть имеет место стационарное состояние фиксации равновесия.

О стационарном состоянии и целостности организма свидетельствует равновесие между скоростью синтеза и распада белков тела. Постоянный обмен и обновление осуществляется между тканевыми белками и фондом свободных аминокислот, образующихся в процессе переваривания пищи и поступающих в кровь (рис).
Рис Стационарное состояние обмена белков

Белки в организме человека обновляются постоянно независимо от его возраста. В молодом растущем организме скорость синтеза белков превышает скорость распада; при тяжелых заболеваниях или голодании — наоборот. Наиболее быстрому обновлению подвергаются белки печени и слизистой оболочки кишечника (до 10 дней), наиболее медленному (до 180 дней) — белки мышц (миозин), соединительной ткани (коллаген) и мозга (миелин).

Период обновления гормонов измеряется часами или даже минутами (инсулин). Скорость обновления белков выражается временем, необходимым для обмена половины всех молекул. Эта величина носит название периода полужизни (Т 1/2). Средняя величина Т1/2 для белков всего организма составляет примерно 3 недели. Общая скорость синтеза белков у человека достигает 500 г в день, что почти в 5 раз превосходит потребление их с пищей. Достижение такого результата осуществляется за счет повторного использования продуктов распада белков и предшественников аминокислот в организме.

Эффективность обмена белков в значительной степени зависит от количественного и качественного состава пищи. При поступлении белков (с пищей) ниже рекомендуемых норм, в организме начинают распадаться белки тканей (печени, плазмы крови и т. д.), а образующиеся аминокислоты — расходоваться на синтез ферментов, гормонов и других, необходимых для поддержания жизнедеятельности организма биологически активных соединений.

Повышенное количество белков в составе пищи значительного влияния на обмен веществ в организме человека не оказывает, при этом избыток продуктов азотистого обмена выводится с мочой.

Состояние белкового обмена в большей степени зависит от недостатка или отсутствия незаменимых аминокислот. Клетки организма человека не могут синтезировать необходимые белки, если в составе пищи отсутствует, хотя бы одна незаменимая аминокислота. Синтез белков также нарушается, если часть аминокислот в кишечнике разрушается патогенной микрофлорой, аминокислоты плохо всасываются, а протеолитические ферменты желудочно-кишечного тракта мало активны. Удаление части аминокислот из организма с продуктами обмена веществ обуславливает его отрицательный азотистый баланс.

Показатель азотистого баланса используется для оценки степени обеспеченности человека белковой пищей. Он представляет собой разность между количеством поступающего с пищей азота и количеством азота, выводимого в виде конечных продуктов обмена, выраженными в одних и тех же единицах (г/сут). При положительном балансе количество выводимого из организма азота меньше количества азота, поступающего с пищей, а при отрицательном — количество выделяемого азота превышает количество азота, поступающего в течение суток. Положительный баланс азота характерен для молодого организма и беременных женщин, отрицательный — для людей, пища которых бедна белком, для больных с нарушениями процессов переваривания пищи и людей пожилого возраста.

Состояние, при котором количество азота, поступающего с пищей, равно количеству азота, выводимого из организма, характерно для азотистого равновесия. Им обладает здоровый взрослый человек, потребляющий полноценные белки в необходимом количестве. Азотистый баланс у такого организма равен нулю.

На состояние азотистого обмена любого организма существенное влияние оказывают жиры, и калорийность пищи, витамины (В1 , В2 , В6 , РР и др.), минеральные вещества и гормоны. Например, гормоны щитовидной железы и низкокалорийная диета стимулируют распад белков, а гормоны роста и половых желез, наоборот, способствуют их синтезу. Таким образом, организм человека требует обеспечения его белковой пищей, в противном случае могут развиваться патологические процессы и наступить гибель организма.


  1. Рекомендуемые нормы потребления белка. Белковый дефицит и пути его решения.

Средняя суточная физиологическая потребность человека в белке в течение более чем ста лет постоянно исследуется и периодически отражается в решениях ВОЗ, ФАО и национальных организаций различных стран. Эти величины носят ориентировочный характер, так как они находятся в стадии постоянного уточнения в зависимости от возраста человека, пола, характера профессиональной деятельности, физиологического состояния, климата, индивидуальных и национальных особенностей и степени загрязнения окружающей среды.

В соответствии с рекомендациями ВОЗ и ФАО величина оптимальной потребности в белке составляет 60-100 г в сутки или 12-15% от общей калорийности пищи. В общем количестве энергии на долю белка животного и растительного происхождения приходится по 6—8%. В пересчете на 1 кг массы тела потребность белка в сутки у взрослого человека в среднем равняется около 1 г, тогда как для детей, в зависимости от возраста, она колеблется от 1,05 до 4,00 г.

Приведенные здесь данные отражают общие требования к оптимальному уровню белка для обеспечения здоровья человека. Рекомендуемые нормы потребления основных пищевых веществ, для основных групп населения, выработанные российской научной школой питания, включают 73—120 г белка в сутки для мужчин и 60—90 г для женщин, в том числе белка животного происхождения 43—65 и 43—49 г, соответственно.

Нижняя граница относится к тем, чья деятельность не связана с физическим трудом, верхняя — к людям, испытывающим тяжелые физические нагрузки. Потребность в белке для лиц, перенесших тяжелые инфекции, хирургические вмешательства, имеющих заболевания органов пищеварения, дыхания, увеличивается в среднем до 110—120 г в день, а в высокобелковой диете, например, у диабетиков его количество может достигать 135—140 г. Белок ограничивается до 20—40 г в сутки при заболеваниях, связанных с почечной недостаточностью, подагре и некоторых других.


  1. Белково-калорийная недостаточность. Пищевые аллергии.

Сегодня в мире существует дефицит пищевого белка и недостаток его в ближайшие десятилетия, вероятно, сохранится. На каждого жителя Земли приходится около 60 г белка в сутки, при норме 70 г. По данным Института питания РАМН, начиная с 1992 г. в России потребление животных белковых продуктов снизилось на 25—35% и соответственно увеличилось потребление углеводсодержащей пищи (картофеля, хлебопродуктов, макаронных изделий). Среднедушевое потребление белка уменьшилось на 17—22%: с 47,5 до 38,8 г/сут белка животного происхождения (49% против 55% рекомендуемых); в семьях с низким доходом потребление общего белка в сутки не превышает 29—40 г.

Снижение употребления белка с пищей соответствует современным мировым тенденциям снижения степени обеспеченности населения Земли белком. Общий дефицит белка на планете оценивается в 10—25 млн. т в год. Из 7 млрд. человек, живущих на Земле, приблизительно половина страдает от недостатка белка.

Нехватка пищевого белка является не только экономической, но и социальной проблемой современного мира. Не во всех странах продукты животного происхождения доступны широким слоям населения. В районах тропической Африки, Латинской Америки и Азии, население которых занято тяжелым сельскохозяйственным трудом, проблема обеспеченности белком яиц, мяса и молока особенно острая. Пока животные белки будут оставаться ценным источником питания, экономически развитым и богатым странам предстоит найти решение важной проблемы: с одной стороны, это разработка рациональных способов хранения и сбыта избытка продуктов животного происхождения, а с другой — поиск путей получения новых ресурсов пищевого белка. В противном случае большая часть населения земного шара будет употреблять в пищу только белки растительного происхождения, отличающиеся неполноценным аминокислотным составом.

Традиционным путем увеличения ресурсов пищевого белка является повышение производительности растениеводства и животноводства на основе технологий возделывания зернобобовых, масличных и злаковых культур, употребляемых как непосредственно в пищу, так и на корм скоту.

Наибольшие количества белка, и особенно лизина, обеспечивают посевы зернобобовых культур: сои, нута, чечевицы, гороха, люпина. Однако, бобовые культуры, используемые непосредственно в пищу, не являются традиционными для многих народов, к тому же трудно достичь высоких урожаев и расширения площадей посева любой культуры в силу особенностей почвенно-климатических условий выращивания и применения агротехнических мероприятий.

Растительный рацион, содержащий полноценный белок в необходимом количестве, может быть создан на основе использования пищевых продуктов, полученных из разных источников. Например, кукуруза бедна триптофаном и лизином, а бобовые — метионином, поэтому смесь, состоящая из кукурузы и соевых белковых продуктов или овощей, обеспечивает поступление в организм «качественного» белка.

Возможность же использования однокомпонентного состава диеты в пище человека повышается за счет практического применения достижений генетики растений. Путем скрещивания, например, ячменя «Хайпроли» с высокобелковыми мутантами, получены сорта с содержанием лизина 4,5-4,8% и белка 13,5-15,5%. Создан гибрид ржи и пшеницы (тритикале) с 3,7% лизина и средним содержанием белка 13,4%.

В процессе трофической (пищевой) цепи теряется 60-75% белка в непереваренных остатках корма, неутилизированных в организме аминокислотах, выделяемых с мочой в виде продуктов распада, в процессах обмена (движении, обновлении белков тканей и т. д.) и через кожно-волосяные покровы.

Особенно большие потери белков происходят за счет затрат на их биосинтез, так как животные белки значительно отличаются по аминокислотному составу от белков растений. Отсутствие у животных способности синтезировать ряд аминокислот приводит к тому, что свои потребности в последних они удовлетворяют за счет повышенного количества растительных белков.

Отрицательную роль для человека играют пищевые аллергии, связанные с непереносимостью организмом отдельных видов белковой пищи (молоко, яйца, орехи, белки некоторых злаков).

Термин «аллергия» происходит от двух греческих слов: «аллос»— другой и «эргон» — действие. При нормальном пищеварении белки расщепляются в желудочно-кишечном тракте до аминокислот, которые не являются антигенами (аллергенами) и не вызывают ответной иммунной (защитной) реакции. Если вкровяное русло без предварительного расщепления через эпителий кишечника проникает незначительное количество белков пищи, то в организме поддерживается как бы тренинг иммунной системы для защиты от действия чужеродных компонентов.

При значительном поступлении в кровяное русло аллергенов возникает острая реакция, проявляющаясяв зуде, кожных высыпаниях или желудочно-кишечных расстройствах.Природа таких реакций до конца не выяснена.

Лекция 2


  1. Понятие пептидов. История изучения пептидов. Пептидная связь. Классификация пептидов

  2. Физиологическое значение и функциональная роль пептидов

  3. Синтез пептидов




  1. Понятие пептидов. История изучения пептидов. Пептидная связь. Классификация пептидов.


Пептиды (греч. питательный)— семейство веществ, молекулы которых построены из двух и более остатков аминокислот, соединённых в цепь пептидными (амидными) связями—C(O)NH—. Обычно подразумеваются пептиды, состоящие из α-аминокислот, однако термин не исключает пептидов, полученных из любых других аминокарбоновых кислот.

В1900 году немецкий химик-органик Герман Эмиль Фишервыдвинул гипотезу о том, что пептиды состоят из цепочки аминокислот, образованных определёнными связями. И уже в1902 годуон получил неопровержимые доказательства существования пептидной связи, а к1905 годуразработал общий метод, при помощи которого стало возможным синтезировать пептиды в лабораторных условиях.

Постепенно учёные изучали строение различных соединений, разрабатывали методы разделения полимерных молекул на мономеры, синтезировали все больше и больше пептидов. На сегодняшний день известно более 1500 видов пептидов, определены их свойства и разработаны методы синтеза.

В1953В.Дю Виньо синтезировал окситоцин, первый полипептидный гормон. В1963г., на основе концепции твердофазного пептидного синтеза (P.Меррифилд) были созданы автоматические синтезаторы пептидов. Использование методов синтеза полипептидов позволило получить синтетический инсулини некоторые ферменты.

Петиды – это полиамиды, построенные из α-аминокислот. По числу аминокислотных остатков в молекуле пептида различают дипептиды, трипептиды, тетрапептиды и т.д. Пептиды, содержащие до 10 аминокислотных остатков, называют олигопептидами, более 10 аминокислотных остатков –полипептидами. Природные полипептиды, включающие более 100 аминокислотных остатков, называют белками.

Формально пептиды можно рассматривать как продукты поликонденсации аминокислот.


Аминокислотные остатки в пептиде связаны амидными (пептидными) связями. Один конец цепи, на котором находится аминокислота со свободной аминогруппой, называют N-концом. Другой конец, на котором находится аминокислота со свободной карбоксильной группой, называют С-концом. Пептиды принято записывать и называть, начиная с N-конца.

Название пептида строят на основе тривиальных названий, входящих в его состав аминокислотных остатков, которые перечисляют, начиная с N-конца. При этом в названиях всех аминокислот за исключением С-концевой суффикс “ин” заменяют на суффикс “ил”. Для сокращенного обозначения пептидов используют трехбуквенные обозначения входящих в его состав аминокислот.

Таким образом, для полной характеристики пептида необходимо знать его аминокислотный состав и аминокислотную последовательность.

Классификация пептидов и строение пептидной цепочки


Молекула пептида — это последовательность аминокислот: два и более аминокислотных остатка, соединённых между собой амидной связью, составляют пептид. Количество аминокислот в пептиде может сильно варьировать. И в соответствии с их количеством различают:

  1. Олигопептиды— молекулы, содержащие до десяти аминокислотных остатков; иногда в их названии упоминается количество входящих в их состав аминокислот, например, дипептид, трипептид, пентапептид и др.;

  2. Полипептиды— молекулы, в состав которых входит более десяти аминокислот.

Соединения, содержащие более ста аминокислотных остатков, обычно называются белками. Однако это деление условно, некоторые молекулы, например, гормон глюкагон, содержащий лишь двадцать девять аминокислот, называют белковым гормоном. По качественному составу различают:

  1. гомомерные пептиды— соединения, состоящие только из аминокислотных остатков;

  2. гетеромерные пептиды— вещества, в состав которых входят также небелковые компоненты.

Пептиды также делятся по способу связи аминокислот между собой:

  1. гомодетные — пептиды, аминокислотные остатки которых соединены только пептидными связями;

  2. гетеродетные пептиды — те соединения, в которых помимо пептидных связей встречаются ещё и дисульфидные, эфирные и тиоэфирные связи.




  1. Физиологическое значение и функциональная роль пептидов

В природе существует два вида пептидов, один из которых синтезируется и выполняет физиологическую роль в процессе жизнедеятельности организма, другой образуется за счет химического или ферментативного гидролиза белков в организме или вне его. Пептиды, образующиеся в процессе гидролиза вне организма (invitro), широко используются для анализа аминокислотной последовательности белков. С помощью пептидов расшифрована аминокислотная последовательность фермента лизоцима, гормона поджелудочной железы инсулина (Сэнджер), нейротоксина яда кобры (Ю. Овчинников и др.), аспартат аминотрансферазы (А. Браунштейн и др.), пепсиногена и пепсина (В. Степанов и др.), лактогенного гормона быка (Н. Юдаев) и других биологически активных соединений организма.

Гидролиз белка в желудочно-кишечном тракте обеспечивает структуру радикалов концевых аминокислот, зависящую от места приложения фермента (свойство специфичности)

.

Пептиды-буферы. В мышцах различных животных и человека обнаружены дипептиды — карнозин и ансерин, выполняющие буферные функции за счет входящего в их состав имидазольного кольца гистидина.

Карнозин и ансерин являются составной частью экстрактивных веществ мяса. Содержание их в последнем достигает 0,2-0,3% от сырой массы продукта.

Пептиды-гормоны. Гормоны — вещества органической природы, вырабатываемые клетками желез внутренней секреции и поступающие в кровь для регуляции деятельности отдельных органов и организма в целом. Гормоны окситоцин и вазопрессинвыделяются задней долей гипофиза (придаток мозга).

Нейропептиды. В последние годы в отдельную группу выделяют более 50 пептидов, содержащихся в мозге человека и животных. Эти вещества определяют реакции поведения (боязнь, страх), влияют на процессы запоминания, обучения, регулируют сон, снимают боль. Нейропептиды, называемые эндорфинами и энкефалинами.

Вазоактивные пептиды. К группе пептидов, оказывающих влияние на тонус сосудов (вазоактивные), относятся брадикинин, каллидин и ангиотензин.

Пептидные токсины. Пептидную природу имеет ряд токсинов, вырабатываемых микроорганизмами, ядовитыми грибами, пчелами, змеями, морскими моллюсками и скорпионами.

Стафилококковые токсины, имея в своем составе 239—296 остатков аминокислот, отличаются по значению изоэлектрической точки, коэффициентам диффузии и седиментации. Токсины могут стать причиной пищевого отравления при употреблении молочных, мясных, рыбных, жидких яичных продуктов, а также салатов и кремовых начинок мучных кондитерских изделий при условии несоблюдения правил санитарно-гигиенической обработки и хранения последних.



Пептиды-антибиотики. Представителями данной группы пептидов являются грамицидин S — циклический антибиотик, синтезируемый бактериями Bacillusbrevis, эффективный при борьбе с инфекционными заболеваниями, вызываемыми стрептококками и пневмококками:

Вкусовые пептиды. Наиболее важными соединениями этой группы являются сладкие и горькие пептиды. В производстве мороженого, кремов в качестве подсластителей или усилителей вкуса используется аспартам.

Аспартам слаще сахарозы в 180 раз, однако, при длительном хранении и тепловой обработке сладость уменьшается. Пептиды горького вкуса образуются при распаде белков в сырах и молоке при участии протеаз молочнокислых бактерий.



Протекторные пептиды. Одним из наиболее распространенных соединений с протекторными свойствами является трипептид глутатион (γ-глутамилцистеинилглицин). Глутатион содержится во всех животных, растениях, бактериях, однако наибольшее его количество встречается в дрожжах и зародыше пшеницы. Вступая в окислительно-восстановительные реакции, глутатион выполняет функцию протектора — предохраняющего свободные —SH группы от окисления.

Пептидные биорегуляторы


На основе разработанной учеными технологии из органов и тканей животных были выделены пептиды, обладающие тканеспецифическим действием, способные восстанавливать на оптимальном уровне метаболизм в клетках тех тканей, из которых они выделены. Важным отличием этих пептидов является их регулирующее действие: при подавлении функции клетки они её стимулируют, а при повышенной функции – снижают до нормального уровня. Это позволило создать новый класс лекарственных препаратов – пептидные биорегуляторы.


  1. Синтез пептидов

В организме белки образуются за секунды или минуты, химический синтезпептидов и белков в лаборатории в сравнении с естественными процессамиочень малоэффективен. Так, например, для первого химического синтезаинсулина понадобилось около двух лет. Несмотря на то что конкуренция сприродой кажется бессмысленной, имеются весьма веские основания для оправдания работы по синтезу и химической модификации таких веществ.

Во-первых, это подтверждение предполагаемой первичной структуры с помощью химического синтеза. Общепринято, что полный синтез — надежное доказательство строения. Несмотря на применение новейших методов исследования, при выяснении первичной структуры могут быть допущены ошибки, что ведет к неправильным выводам.

Во-вторых, с помощью синтетических аналогов изучается связь между структурой и активностью.Для того чтобы выяснить структурные параметры, ответственные забиологическое действие пептидов, были синтезированы многие тысячи аналогов.

В этой связи представляет интерес также изучение конформаций природных веществ путем сравнения с аналогами различной структуры. Наконец, следует напомнить о возможности получать синтетическим путемрадиоактивно меченные аналоги для изучения их связывания и радиоиммунологических исследований.

В-третьих, химический синтез преследует цель изменить пептиды для модификации фармакологического действия. Эта задача тесно связанас предыдущей, так как при исследовании связи между строением и активностью неизбежно выявляются новые аспекты для фармацевтического использования. Можно осуществлять различные модификации природнойаминокислотной последовательности для получения веществ с улучшенными свойствами.

В-четвертых, химический синтез иногда проводят из экономических соображений. Например, применяемый для терапевтических целей окситоцин в настоящее время по этой причине получается исключительно химическим синтезом.

И наконец, в-пятых, химический синтез дает модельные пептиды для изучения конформационных закономерностей с помощью физико-химических методов. Синтетические модели применяют также для исследования антигенного действия полипептидов и белков. Зачастую активные пептиды в природе обнаруживаются лишь в нанограммовых количествах. Плюс к этому, методы очистки и выделения пептидов из природных источников не могут полностью разделить искомую аминокислотную последовательность с пептидами противоположного или же иного действия. А в случае специфических пептидов, синтезируемых организмом человека, получить их возможно лишь путём синтеза в лабораторных условиях.

Лекция 3


Углеводы


    1. Общая характеристика углеводов. Моносахариды. Олигосахариды. Полисахариды

    2. Физиологическое значение углеводов

  1. Углеводы в пищевых продуктах

  2. Гидролиз крахмала (кислотный, ферментативный и кислотно-ферментативный). Гидролиз сахарозы




    1. Общая характеристика углеводов. Моносахариды. Олигосахариды. Полисахариды.

Название «углеводы» было дано соединениям этого класса почти 90 лет назад, когда полагали, что все они содержат углерод, водород и кислород в таких соотношениях, как будто представляют собой различные гидраты углерода общей формулы Сп2О)m.

В дальнейшем оказалось, что ряд соединений, принадлежащих по своим свойствам к классу углеводов, содержат водород и кислород в несколько иной пропорции, чем указано в общей формуле (например, дезоксирибоза — C5H10O4). Однако название «углеводы» сохранилось, хотя химического смысла оно не имеет.

Углеводы широко распространены в природе, они встречаются в свободной или связанной форме в любой растительной, животной или бактериальной клетке. Углеводы составляют три четверти биологического мира и примерно 60-80% калорийности пищевого рациона. Наиболее распространенный углевод — целлюлоза, структурный компонент деревьев и других растений. Главный пищевой ингредиент — крахмал.

Согласно принятой в настоящее время классификации углеводы подразделяются на три основные группы: моносахариды, олигосахариды и полисахариды.



Каталог: upload -> iblock
iblock -> Конкурсного собеседования при поступлении в ординатуру по специальности
iblock -> Агентство образования администрации Красноярского края Управление образования Администрации г. Канска мбоу гимназия №1 Упаковка как источник загрязнения продуктов питания свинцом Цуприкова Мария, ученица 10 класса мбоу гимназия №1 г
iblock -> Урология высшая категория
iblock -> 2. Аннотации рабочих программ дисциплин ооп 040400. 62 «Социальная работа», форма обучения – очная
iblock -> Тест: "Неврология"


Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

    Главная страница