Маркетинг и менеджмент в России и за рубежом


Анализ на основе множественной регрессии



Скачать 10.54 Mb.
страница224/238
Дата17.01.2020
Размер10.54 Mb.
ТипКнига
1   ...   220   221   222   223   224   225   226   227   ...   238
Анализ на основе множественной регрессии основан на использова­нии более чем одной независимой переменной в уравнении регрессии. Это усложняет анализ, делая его многомерным. Однако регрессионная модель более полно отражает действительность, так как в реальности исследуемый параметр, как правило, зависит от множества факторов.

Так, например, при прогнозировании спроса идентифицируются факторы, определяющие спрос, определяются взаимосвязи, существую­щие между ними, и прогнозируются их вероятные будущие значения; из них при условии реализации условий, для которых уравнение множест­венной регрессии остается справедливым, выводится прогнозное значе­ние спроса.

Все, что касается множественной регрессии, концептуально явля­ется идентичным парной регрессии, за исключением того, что использу­ется более чем одна переменная. Под этим углом зрения слегка изменя­ются терминология и статистические расчеты.

Многофакторное уравнение множественной регрессии имеет сле­дующий вид:



Термин «коэффициент условно-чистой регрессии» означает, что каждая из величин b измеряет среднее по совокупности отклонение зави­симой переменной (результативного признака) от ее средней величины при отклонении зависимой переменной (фактора) х от своей средней величины на единицу ее измерения и при условии, что все прочие фак­торы, входящие в уравнение регрессии, закреплены на средних значени­ях, не изменяются, не варьируются.

Таким образом, в отличие от коэффициента парной регрессии ко­эффициент условно-чистой регрессии измеряет влияние фактора, абст­рагируясь от связи вариации этого фактора с вариацией остальных фак­торов. Если было бы возможным включать в уравнение регрессии все факторы, влияющие на вариацию результативного признака, то величины b можно было бы считать мерами чистого влияния факторов. Но так как реально невозможно включить все факторы в уравнение, то коэффициен­ты b не свободны от примеси влияния факторов, не входящих в уравне­ние.

Многофакторная система требует уже не одного, а множества по­казателей тесноты линейных связей, имеющих разный смысл и примене­ние. Основой измерения связей является матрица парных коэффициен­тов корреляции.

На основе этой матрицы можно судить о тесноте связи факторов с результативным признаком и между собой. Хотя показатели матрицы относятся к парным связям, все же матрицу можно использовать для предварительного отбора факторов для включения в уравнение регрессии. Не рекомендуется включать в уравнение факторы, слабо связанные с результативным признаком, но тесно связанные (коллинеарные) с други­ми факторами (по условию факторные признаки в уравнении множест­венной корреляции не должны быть связаны друг с другом). Совершенно недопустимо включать в анализ факторы, функционально связанные друг с другом, т.е. с коэффициентом корреляции, равным единице.

На основе матрицы парных коэффициентов вычисляется наиболее общий показатель тесноты связи всех входящих в уравнение регрессии факторов с результативным признаком — коэффициент множественной детерминации [10].

Помимо целей прогнозирования множественная регрессия может использоваться для отбора статистически значимых независимых факторов, которые следует использовать при исследовании результативного признака. В частности, при поиске критериев сегментации исследователь может использовать регрессионный анализ для выделения демографиче­ских факторов, которые оказывают наиболее сильное влияние на какой-то результирующий показатель, характеризующий поведение покупате­лей, например выбор товара определенной марки.

Кроме того, множественная регрессия может использоваться для определения относительной важности независимых переменных.

Поскольку независимые переменные имеют различные размерно­сти, проводить их сравнение прямым образом нельзя. Например, нельзя прямым образом сравнивать коэффициенты b для размера семьи и вели­чины среднего для семьи дохода.

Обычно в данном случае поступают следующим образом. Делят каждую разницу между независимой переменной и ее средней на среднее квадратическое отклонение для этой независимой переменной. Далее возможно прямое сравнение полученных величин (коэффициентов). Чем больше абсолютная величина коэффициентов, тем большей относитель­ной важностью, влиянием на результирующий прогнозируемый показа­тель обладают переменные величины, которые характеризуют данные коэффициенты.

Многие данные маркетинговых исследований представляются для различных интервалов времени, например на ежегодной, ежемесячной и другой основе. Такие данные называются временными рядами. Анализ временных рядов направлен на выявление трех видов закономерностей изменения данных: трендов, цикличности и сезонности.

Тренд характеризует общую тенденцию в изменениях показателей ряда. Те или иные качественные свойства развития выражают различные уравнения трендов: линейные, параболические, экспоненциальные, лога­рифмические, логистические и др. После теоретического исследования особенностей разных форм тренда необходимо обратиться к фактическо­му временному ряду, тем более что далеко не всегда можно надежно ус­тановить, какой должна быть форма тренда из чисто теоретических сооб­ражений. По фактическому динамическому ряду тип тренда устанавли­вают на основе графического изображения, путем осреднения показате­лей динамики, на основе статистической проверки гипотезы о постоян­стве параметра тренда.

В табл. 7.1 приводятся данные объема продаж велосипедов опреде­ленной компании за 17 лет.


Таблица 7.1


Каталог: old
old -> Тревожно-депрессивные расстройства и качество жизни у больных старческого возраста c ишемической болезнью сердца, осложненной хронической сердечной недостаточностью, возможности коррекции 14. 00. 05 внутренние болезни
old -> Внутриполостная фотодинамическая терапия рака мочевого пузыря и аденомы предстательной железы 14. 00. 40. Урология
old -> Экстрапинеальный мелатонин в процессе старения 14. 00. 53 геронтология и гериатрия
old -> Взаимосвязь синдрома эмоционального выгорания и социально-психологических характеристик личности в экстремальных условиях профессиональной социализации
old -> 5. Дерматовенерология
old -> Темы рефератов по патофизиологии
old -> Порядок оказания стационарной помощи в муз «Детская городская клиническая больница г. Владивостока»


Поделитесь с Вашими друзьями:
1   ...   220   221   222   223   224   225   226   227   ...   238


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

    Главная страница