Маркетинг и менеджмент в России и за рубежом


Объем продажи велосипедов



Скачать 10.54 Mb.
страница225/238
Дата17.01.2020
Размер10.54 Mb.
ТипКнига
1   ...   221   222   223   224   225   226   227   228   ...   238
Объем продажи велосипедов


Продолжение табл. 7.1


Необходимо определить прогнозную оценку объема продаж на во­семнадцатый год.

Представив в графическом виде данные табл. 7.1, можно с помо­щью метода наименьших квадратов подобрать прямую линию, в наи­большей степени соответствующую полученным данным (рис. 7.1), и оп­ределить прогнозную величину объема продаж.

В то же время более внимательное рассмотрение рис. 7.1 позволяет сделать вывод о том, что не все точки близко расположены к прямой. Особенно эти расхождения велики для последних лет, а верить послед­ним данным, видимо, следует с достаточным основанием.

В данном случае можно применить метод экспоненциального сгла­живания, назначая разные весовые коэффициенты (большие для послед­них лет) данным для разных лет [10], [25]. В последнем случае прогноз­ная оценка в большей степени соответствует тенденциям последних лет.

Циклический характер колебаний статистических показателей ха­рактеризуется длительным периодом (солнечная активность, урожайность отдельных культур, экономическая активность). Такие явления, как пра­вило, не являются предметом исследования маркетологов, которых обыч­но интересует динамика проблемы на относительно коротком интервале времени.

Сезонные колебания показателей имеют регулярный характер и наблюдаются в течение каждого года. Они и являются предметом изуче­ния маркетологов (спрос на газонокосилки, на отдых в курортных местах в течение года, на телефонные услуги в течение суток и т.д.). Поскольку выявленные закономерности носят регулярный характер, то их вполне обоснованно можно использовать в прогнозных целях.



В отличие от прогноза на основе регрессионного уравнения про­гноз по тренду учитывает факторы развития только в неявном виде, и это не позволяет «проигрывать» разные варианты прогнозов при разных воз­можных значениях факторов, влияющих на изучаемый признак. Зато прогноз по тренду охватывает все факторы, в то время как в регрессион­ную модель в лучшем случае невозможно включить в явном виде более 10—20 факторов.

Временные ряды помимо простой экстраполяции могут использо­ваться также в целях более глубокого прогнозного анализа, например объема продаж. Целью анализа в данном случае являются разложение временного ряда продаж на главные компоненты, измерение эволюции каждой составляющей в прошлом и ее экстраполяция на будущее. В ос­нове метода лежит идея стабильности причинно-следственных связей и регулярности эволюции факторов внешней среды, что делает возможным использование экстраполяции. Метод состоит в разложении временного ряда на пять компонент:

— структурная компонента, или долгосрочный тренд, обычно свя­занный с жизненным циклом товара на исследуемом рынке;

— циклическая компонента, соответствующая колебаниям относи­тельно долгосрочного тренда под воздействием среднесрочных флуктуа­ций экономической активности;

— сезонная компонента, или краткосрочные периодические флук­туации, обусловленные различными причинами (климат, социально— психологические факторы, структура нерабочих дней и т.д.);

— маркетинговая компонента, связанная с действиями по продви­жению товара, временными снижениями цен и т.п.;

— случайная компонента, отражающая совокупное действие плохо изученных процессов, непредставимых в количественной форме.

Для каждой компоненты рассчитывается параметр, основанный на наблюдавшихся закономерностях: долгосрочном темпе прироста продаж, конъюнктурных флуктуациях, сезонных коэффициентах, специфичных факторах (демонстрации, мероприятия по стимулированию сбыта и т.п.). Затем эти параметры используют для составления прогноза.

Понятно, что такой прогноз имеет смысл как краткосрочный, на период, в отношении которого можно принять, что характеристики изу­чаемого явления существенно не изменятся. Это требование часто оказы­вается реалистичным вследствие достаточной инерционности внешней среды.

К числу главных ограничений экстраполяционных методов следует отнести следующие.

Большинство прогнозных ошибок связано с тем, что в момент формулирования прогноза в более или менее явной форме подразумева­лось, что существующие тенденции сохранятся в будущем, что редко оп­равдывается в реальной экономической и общественной жизни.

Так, в 40-х годах нашего века американские специалисты предска­зывали: производство легковых автомобилей в США достигнет насыще­ния и будет составлять 300 000 штук в месяц. Но уже в 1969 г. их в США производилось более 550 000 штук. В настоящее время эта цифра возрос­ла еще в 1,2—1,3 раза.

В 1983—1984 гг. на американский рынок были введены 67 новых моделей персональных компьютеров, и большинство фирм рассчитывало на взрывной рост этого рынка. По прогнозам, которые давали в то время маркетинговые фирмы, число установленных компьютеров в 1988 г. должно было составить от 27 до 28 миллионов. Однако к концу 1986 г. было поставлено только 15 миллионов, поскольку условия использования компьютеров радикально изменились, а этого никто не предвидел.

Эти ошибки в прогнозах носили не математический, а чисто логи­ческий характер: ведь при прогнозировании использовались временные ряды, достаточно хорошо отражающие имеющийся в то время статисти­ческий материал.

Развитие общества определяется очень большим числом факторов. Эти факторы сильно связаны между собой, и далеко не все они поддают­ся непосредственному измерению. Кроме того, по мере развития общест­ва порой неожиданно начинают вступать в действие все новые и новые факторы, которые раньше не учитывались.

Временные ряды могут становиться ненадежной основой для раз­работки прогнозов по мере того, как экономика приобретает все более международный характер и все в большей степени подвергается крупной технологической перестройке. В связи с этим необходимо в первую оче­редь развивать способности предвидения, что подразумевает хорошее знание ключевых факторов и оценку чувствительности фирмы к внеш­ним угрозам.

Вышеназванное ни в коей мере не умаляет значимости экстрополяционных методов в прогнозировании. Как и любые методы, их надо уметь использовать. Прежде всего экстраполяционные методы следует применять для относительно краткосрочного прогнозирования развития достаточно стабильных, хорошо изученных процессов. Прогнозный пе­риод времени не должен превышать 25—30% от исходной временной базы. При использовании уравнений регрессии прогнозные расчеты сле­дует проводить для оптимистических и пессимистических оценок исход­ных параметров (независимых переменных), получая таким образом оп­тимистические и пессимистические оценки прогнозируемого параметра. Реальная прогнозная оценка должна находиться между ними.

В ряде случаев прогнозную оценку, полученную на основе экстраполяционных методов, используют как индикатор желательности получе­ния определенной величины прогнозируемого параметра. Предположим, что была получена прогнозная оценка величины спроса на какой-то то­вар. Она говорит о том, что при тех же условиях внешней среды, струк­туре и силе действия исходных факторов величина спроса к определен­ному моменту времени достигнет такой-то величины. Менеджерам, кото­рые используют результаты данного прогноза, следует ответить на во­прос: «А устраивает ли нас данная величина спроса?» Если «да», то надо приложить максимум усилий, чтобы все сохранить без изменения. Если «нет», то необходимо использовать внутренние возможности (например, провести дополнительную рекламную компанию) и постараться повлиять на определенные факторы внешней среды, поддающиеся косвенному воздействию (например, повлиять на деятельность посредников, пролоббироавть изменение определенных тарифов, импортных пошлин). Вся эта деятельность направлена на обеспечение получения желаемой величины спроса.





Каталог: old
old -> Тревожно-депрессивные расстройства и качество жизни у больных старческого возраста c ишемической болезнью сердца, осложненной хронической сердечной недостаточностью, возможности коррекции 14. 00. 05 внутренние болезни
old -> Внутриполостная фотодинамическая терапия рака мочевого пузыря и аденомы предстательной железы 14. 00. 40. Урология
old -> Экстрапинеальный мелатонин в процессе старения 14. 00. 53 геронтология и гериатрия
old -> Взаимосвязь синдрома эмоционального выгорания и социально-психологических характеристик личности в экстремальных условиях профессиональной социализации
old -> 5. Дерматовенерология
old -> Темы рефератов по патофизиологии
old -> Порядок оказания стационарной помощи в муз «Детская городская клиническая больница г. Владивостока»


Поделитесь с Вашими друзьями:
1   ...   221   222   223   224   225   226   227   228   ...   238


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

    Главная страница