Методическое пособие для самостоятельной работы студентов на уроках по предмету Биология



страница17/204
Дата24.10.2018
Размер5.43 Mb.
ТипМетодическое пособие
1   ...   13   14   15   16   17   18   19   20   ...   204
микроэлементы:

- железо Fe, медь Cu, цинк Zn, марганец Mn, кобальт Co, йод I, молибден Mo, ванадий V, никель Ni, хром Cr, фтор F, селен Se, кремний Si, олово Sn, бор B и мышьяк As.

Большинство встречающихся в живой материи элементов имеют сравнительно небольшие порядковые номера, и лишь у трех из них порядковые номера превышают 34. Более того, соотношение этих химических элементов в живых организмах совсем иное, чем в земной коре. В живых организмах в наибольших количествах встречаются четыре элемента – водород, кислород, углерод и азот; в большинстве клеток на их долю приходится более 99 % общей массы. Относительное содержание трех из этих элементов – водорода, азота и углерода – в живом веществе гораздо выше, чем в земной коре.

Различия в элементарном составе земной коры и живой материи станут еще более явными, если при сравнении учитывать только вес сухого вещества живых организмов, исключив из рассмотрения воду, на долю которой приходится более 75 % их общего веса. В живых клетках углерод составляет 50-60 % сухого вещества, азот – 8-10 %, кислород – 25-30 % и водород – 3-4 %. В земной же коре на долю углерода, водорода и азота, вместе взятых, приходится менее 1 % ее общей массы. Вместе с тем, восемь из десяти элементов, содержащихся в организме человека в наибольших количествах, входят в число десяти элементов, которые в наибольших количествах присутствуют в морской воде. Исходя из этих данных, можно сделать два рабочих допущения. Согласно первому из них, химические соединения, содержащие углерод, водород, кислород и азот (наиболее распространенные в живой природе элементы), были отобраны в ходе эволюции благодаря их особой приспособленности для участия в процессах жизнедеятельности. Второе допущение состоит в том, что морская вода была именно той жидкой средой, в которой живые организмы впервые появились на ранних этапах развития Земли.

- Основные элементы

Водород, кислород, углерод и азот способны образовывать прочные ковалентные связи посредством спаривания электронов, принадлежащих двум атомам. Кислород, углерод и азот образуют и одинарные, и двойные связи, благодаря чему получаются самые разнообразные химические соединения. Химические свойства живых организмов в значительной степени зависят от углерода, на долю которого приходится более половины их сухого веса. Для заполнения внешней электронной оболочки атому водорода не хватает одного электрона, атому кислорода – двух, атому азота – трех и атому углерода – четырех электронов. Таким образом, при взаимодействии атома углерода с четырьмя атомами водорода «обобществляются» четыре электронные пары, в результате чего возникает соединение метан (СН4), в котором каждая общая электронная пара соответствует одной одинарной связи.

Углерод может образовывать одинарные связи также и с атомами кислорода и азота. Однако наиболее важное значение в биологии имеет способность атомов углерода «делиться» электронными парами друг с другом, что приводит к формированию очень устойчивых одинарных углерод-углеродных связей. Каждый атом углерода может образовать одинарную связь с одним, двумя, тремя или четырьмя другими атомами углерода. Кроме того, два углеродных атома, соединяясь друг с другом, могут «обобществить» две пары электронов; при этом образуется двойная углерод-углеродная связь.

Благодаря описанным свойствам, ковалентно связанные атомы углерода способны образовывать множество разнообразных структур: линейные и разветвленные цепи, циклические и сетчатые структуры, а также их комбинации. Все эти структуры лежат в основе скелетов многочисленных органических молекул самых разных типов. К таким углеродным скелетам могут присоединяться другие атомные группы, что обусловлено способностью углерода образовывать ковалентные связи с кислородом, водородом, азотом и серой. Вещества, имеющие скелеты из ковалентно связанных углеродных атомов, называются органическими соединениями, причем их разнообразие практически безгранично.

Поскольку большинство биомолекул относятся к органическим соединениям, можно предположить, что способность углерода участвовать в формировании разнообразных химических связей сыграла решающую роль в выборе именно углеродсодержащих соединений для создания молекулярных механизмов клеток в процессе возникновения и эволюции живых организмов. Особенно важна способность атомов углерода взаимодействовать друг с другом путем возникновения ковалентных углерод-углеродных связей. Каждый углеродный атом может установить ковалентные связи с четырьмя атомами углерода. Ковалентно связанные атомы углерода могут формировать каркасы бесчисленного множества различных органических молекул. Поскольку атомы углерода легко вступают в ковалентные связи с кислородом, азотом и серой, органические молекулы достигают исключительной сложности и разнообразия строения.


Каталог: uploads -> doc
doc -> История урологии среднего урала
doc -> Общероссийское движение «трезвая россия» международная славянская академия союз борьбы за народную трезвость
doc -> Наркотики и здоровье
doc -> Проектная работа по физике «Магнитные бури: мифы и реальность»
doc -> Наука об отрезвлении общества
doc -> Тесты по теме «Класс Птицы»
doc -> Перечень лекарственных препаратов, отпускаемых населению в соответствии с перечнем групп населения и категорий заболеваний, при амбулаторном лечении которых лекарственные препараты и изделия медицинского назначения отпускаются по рецептам врачей


Поделитесь с Вашими друзьями:
1   ...   13   14   15   16   17   18   19   20   ...   204


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

    Главная страница