Общая гигиена. Солнечная радиация и ее гигиеническое значение



Скачать 79.61 Kb.
Дата20.03.2018
Размер79.61 Kb.

Общая гигиена. Солнечная радиация и ее гигиеническое значение.
Под солнечной радиацией мы понимаем весь испускаемый Солнцем поток радиации, который представляет собой электромагнитные колебания различной длины волны. В гигиеническом отношении особый интерес пред­ставляет оптическая часть солнечного света, которая занимает диапазон от 280-2800 нм. Более длинные волны - радиоволны, более короткие - гамма-лучи, ионизирующее излучение не доходят до поверхности Земли, потому что задерживаются в верхних слоях атмосферы, в озоновом слое в частности. Озон распространен во всей атмосфере, но на высоте около 35 км формирует озоновый слой.

Интенсивность солнечной радиации зависит в первую очередь от высоты стояния солнца над горизонтом. Если солнце находится в зените, то путь, который проходит солнечные лучи, будет значительно короче, чем их путь, если солнце находится у горизонта. За счет увеличения пути интенсивность солнечной радиации меняется. Ин­тенсивность солнечной радиации зависит также от того, под каким углом падают солнечные лучи, от этого зави­сит и освещаемая территория (при увеличении угла падения площадь освещения увеличивается). Таким образом, та же солнечная радиация приходится на большую поверхность, поэтому интенсивность уменьшается. Интесив­ность солнечной радиации зависит от массы воздуха, через который проходит солнечные лучи. Интенсивность солнечной радиации в горах будет выше, чем над уровнем моря, потому что слой воздуха, через который проходят солнечные лучи, будет меньше чем над уровнем моря. Особое значение представляет влияние на интенсивность солнечной радиации состояние атмосферы, ее загрязнение. Если атмосфера загрязнена, то интенсивность солнеч­ной радиации снижается (в городе интенсивность солнечной радиации в среднем на 12% меньше чем в сельской местности). Напряжение солнечной радиации имеет суточный и годовой фон, то есть напряжение солнечной ра­диации меняется в течение суток, и зависит также от времени года. Наибольшая интенсивность солнечной ра­диации отмечается летом, меньшая - зимой. По своему биологическому действию солнечная радиация неодно­родна: оказывается, каждая длина волны оказывает различное действие на организм человека. В связи с этим солнечный спектр условно разделен на 3 участка:

  1. ультрафиолетовые лучи, от 280 до 400 нм

  2. видимый спектр от 400 до 760 нм

  3. инфракрасные лучи от 760 до 2800 нм.

При суточном и годовом годе солнечной радиации состав и интенсивность отдельных спектров подвергается изменениям. Наибольшим изменениям подвергаются лучи УФ спектра.

Интенсивность солнечной радиации мы оцениваем исходя из, так называемой, солнечной постоянной. Солнеч­ная постоянная - это количество солнечной энергии поступающей в единицу времени на единицу площади, распо­ложенную на верхней границе атмосферы под прямым углом к солнечным лучам при среднем расстоянии Земли от Солнца. Эта солнечная постоянная измерена с помощью спутника и равна 1,94 калории\см2 в мин. Проходя че­рез атмосферу солнечные лучи значительно ослабевают - рассеиваются, отражаются, поглощаются. В среднем при чистой атмосфере на поверхности Земли интенсивность солнечной радиации составляет 1, 43 - 1,53 кало­рии\см2 в мин.

Напряжение солнечных лучей в полдень в мае в Ялте 1,33, в Москве 1,28, в Иркутске 1,30, В Ташкенте 1,34.

Биологическое значение видимого участка спектра.

Видимый участок спектра - специфический раздражитель органа зрения. Свет необходимое условие работы глаза, самого тонкого и чуткого органа чувств. Свет дает примерно 80% информации о внешнем мире. В этом состоит специфическое действие видимого света, но еще общебиологическое действие видимого света: он сти­мулирует жизнедеятельность организма, усиливает обмен веществ, улучшает общее самочувствие, влияет на психоэмоциональную сферу, повышает работоспособность. Свет оздоравливает окружающую среду. При недос­татке естественного освещения возникают изменения со стороны органа зрения. Быстро наступает утомляемость, снижается работоспособность, увеличивается производственный травматизм. На организм влияет не только ос­вещенность, но и различная цветовая гамма оказывает различное влияние на психоэмоциональное состояние. Наилучшие показатели выполнения работы были получены препарат желтом и белом освещении. В психофизио­логическом отношении цвета действуют противоположно друг другу. Было сформировано 2 группы цветов в связи с этим: 1) теплые тона - желтый, оранжевый, красный. 2) холодные тона - голубой, синий, фиолетовый. Холодные и те­плые тона оказывают разное физиологическое действие на организм. Теплые тона увеличивают мускульное на­пряжение, повышают кровяное давление, учащают ритм дыхания. Холодные тона наоборот понижают кровяное давление, замедляют ритм сердца и дыхания. Это часто используют на практике: для пациентов с высокой тем­пературой больше всего подходят палаты, окрашенные в лиловый цвет, темная охра улучшает самочувствие больных с пониженным давлением. Красный цвет повышает аппетит. Более того, эффективность лекарств можно повысить, изменив цвет таблетки. Больным, страдающим депрессивными расстройствами, давали одно и то же лекарство в таблетках разного цвета: красного, желтого, зеленого. Самые лучшие результаты принесло лечение таблетками желтого цвета.

Цвет используется как носитель закодированной информации, например, на производстве для обозначения опасности. Существует общепринятый стандарт на сигнально-опозновательную окраску : зеленый -- вода, крас­ный - пар, желтый - газ, оранжевый - кислоты, фиолетовый - щелочи, коричневый - горючие жидкости и масла, синий - воздух , серый - прочее.

С гигиенических позиций оценка видимого участка спектра проводится по следующим показателям: отдельно оценивается естественное и отдельно искусственно освещение. Естественное освещение оценивается по 2 группам показателей: физические и светотехнические. К первой группе относится:

  1. световой коэффициент - характеризует собой отношение площади застекленной поверхности окон к площади пола.

  2. Угол падения - характеризует собой, под каким углом падают лучи. По норме минимальный угол падения должен быть не менее 270.

  3. Угол отверстия - характеризует освещенность небесным светом (должен быть не менее 50). На первых эта­жах ленинградских домов - колодцев этот угол фактически отсутствует.

  4. Глубина заложения помещения - это отношение расстояния от верхнего края окна до пола к глубине помеще­ния (расстояние от наружной до внутренней стены).

Светотехнические показатели - это показатели, определяемые с помощью прибора - люксметра. Измеряется абсолютная и относительная освещаемость. Абсолютная освещаемость - это освещаемость на улице. Коэффи­циент освещаемости (КЕО) определяется как отношение относительной освещаемости измеряемой как отноше­ние относительной освещенности (измеренной в помещении) к абсолютной, выраженное в %. Освещенность в по­мещении измеряется на рабочем месте. Принцип работы люксметра состоит в том что прибор имеет чувстви­тельный фотоэлемент (селеновый - так как селен приближен по чувствительности к глазу человека). Ориентиро­вочную освещаемость на улице можно узнать с помощью гра светового климата.

Для оценки искусственного освещения помещений имеет значение яркость, отсутствие пульсаций, цветность и др.

ИНФРАКРАСНЫЕ ЛУЧИ. Основное биологическое действие этих лучей - тепловое, причем это действие также зависит от длины волны. Короткие лучи несут больше энергии, поэтому они проникают в глубь, оказывают сильный тепловой эффект. Длинноволновый участок оказывает свое тепловое действие на поверхности. Это ис­пользуется в физиотерапии для прогрева участков лежащих на разной глубине.

Для того чтобы оценить измерить инфракрасные лучи существует прибор - актинометр. Измеряется инфра­красная радиация в калориях на см2\мин. Неблагоприятное действие инфракрасных лучей наблюдается в горячих цехах, где они могут приводить к профессиональным заболеваниям - катаракте (помутнение хрусталика). При­чиной катаракты является короткие инфракрасные лучи. Мерой профилактики является использование защитных очков, спецодежды.

Особенности воздействия инфракрасных лучей на кожу: возникает ожог - эритема. Она возникает за счет те­плового расширения сосудов. Особенность ее состоит в том, что она имеет различные границы, возникает сразу.

В связи с действием инфракрасных лучей могут возникать 2 состояния организма: тепловой удар и солнечный удар. Солнечный удар - результат прямого воздействия солнечных лучей на тело человека в основном с пораже­нием ЦНС. Солнечный удар поражает тех, кто проводит много часов подряд под палящими лучами солнца с не­покрытой головой. Происходит разогревание мозговых оболочек.

Тепловой удар возникает из-за перегревания организма. Он может случиться с тем, кто выполняет тяжелую фи­зическую работу в жарком помещении или при жаркой погоде. Особенно характерны были тепловые удары у на­ших военнослужащих в Афганистане.

Помимо актинометров для измерения инфракрасной радиации существуют параметры различных видов. В ос­нове ох действия - поглощение черным телом лучистой энергии. Воспринимающий слой состоит из зачерненных и белых пластинок, которые в зависимости от инфракрасной радиации нагреваются по-разному. Возникает ток на термобатарее и регистрируется интенсивность инфракрасной радиации. Поскольку интенсивность инфракрасной радиации имеет значение в условиях производства, то существуют нормы инфракрасной радиации для горячих цехов, для того чтобы избежать неблагоприятного воздействия на организм человека, например, в трубопрокат­ном цехе норма 1,26 - 7,56, выплавка чугуна 12,25. Уровни излучения, превышающие 3,7, считаются значитель­ными и требуют проведения профилактических мероприятий - применение защитных экранов, водяные завесы, спецодежда.

УЛЬТРАФИОЛЕТОВЫЕ ЛУЧИ (УФ).

Это наиболее активная в биологическом плане часть солнечного спектра. Она также неоднородна. В связи с этим различают длинноволновые и коротковолновые УФ. УФ способствуют загару. При поступлении УФ на кожу в ней образуются 2 группы веществ: 1) специфические вещества, к ним относятся витамин Д, 2) неспецифические вещества - гистамин, ацетилхолин, аденозин, то есть это продукты расщепления белков. Загарное или эритемное действие сводится к фотохимическому эффекту - гистамин и другие биологически активные вещества способ­ствуют расширению сосудов. Особенность этой эритемы - она возникает несразу. Эритема имеет четко ограни­ченные границы. Ультрафиолетовая эритема всегда приводит к загару более или менее выраженному, в зависи­мости от количества пигмента в коже. Механизм загарного действия еще недостаточно изучен. Считается, что сначала возникает эритема, выделяются неспецифические вещества типа гистамина, продукты тканевого рас­пада организм переводит в меланин, в результате чего кожа приобретает своеобразный оттенок. Загар, таким образом, является проверкой защитных свойств организма (больной человек не загорает, загорает медленно).

Самый благоприятный загар возникает под воздействием УФЛ с длиной волны примерно 320 нм, то есть при воздействии длинноволновой части УФ-спектра. На юге в основном преобладают коротковолновые, а на севере - длинноволновые УФЛ. Коротковолновые лучи наиболее подвержены рассеянию. А рассеивание лучше всего про­исходит в чистой атмосфере и в северном регионе. Таким образом, наиболее полезный загар на севере - он бо­лее длительный, более темный. УФЛ являются очень мощным фактором профилактики рахита. При недостатке УФЛ у детей развивается рахит, у взрослых - остеопороз или остеомаляция. Обычно с этим сталкиваются на Крайнем Севере или у групп рабочих работающих под землей. В Ленинградской области с середины ноября до середины февраля практически отсутствует УФ часть спектра, что способствует развитию солнечного голода­ния. Для профилактики солнечного голодания используется искусственный загар. Световое голодание - это дли­тельное отсутствие УФ-спектра. При действии УФ в воздухе происходит образование озона, за концентрацией ко­торого необходим контроль.

УФЛ оказывают бактерицидное действие. Оно используется для обеззараживания больших палат, пищевых продуктов, воды.

Определяется интенсивность УФ радиации фотохимическим методом по количеству разложившейся под дей­ствием УФ щавелевой кислоты в кварцевых пробирках (обыкновенное стекло УФЛ не пропускает). Интенсив­ность УФ радиации определяется и прибором ультрафиолетметром. В медицинских целях ультрафиолет измеря­ется в биодозах.

Поделитесь с Вашими друзьями:


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

    Главная страница