Руководство по антиинфекционной химиотерапии (Под ред. Л. С. Страчунского, Ю. Б. Белоусова, С. Н. Козлова) 2000-2007 нииах сгма


Таблица 7. Резистентность (%) Salmonella spp. (Смоленск, 1999 г.)



страница9/70
Дата22.04.2016
Размер5.32 Mb.
ТипРуководство
1   ...   5   6   7   8   9   10   11   12   ...   70

Таблица 7. Резистентность (%) Salmonella spp. (Смоленск, 1999 г.)

 

АМП

АМС

ЦТМ

НАЛ

ЦИП

НОР

ХФ

ТЕТ

ТСМ

S.enteritidis

2,7

2,7

0

2,7

0

0

6,7

4

0

Salmonella spp.

6,3

6,3

0

3,2

0

0

9,5

10,5

0

Сокращения:
АМП - ампициллин, АМС - ампициллин/сульбактам, ЦТМ - цефотаксим,
НАЛ - налидиксовая кислота, ЦИП - ципрофлоксацин, НОР - норфлоксацин;
ХФ - хлорамфеникол, ТЕТ - тетрациклин, ТСМ - ко-тримоксазол.
Однако представленные данные не отражают всей картины антибиотикорезистентности в России. Так в Санкт-Петербурге в 1996 г. были выделены клинические штаммы S.typhimurium и изоляты из окружающей среды, резистентные к цефотаксиму. Молекулярный анализ этих штаммов, а также цефотаксиморезистентных изолятов из стационаров Белоруссии, показал, что они представляют собой один клон, а резистентность к β-лактамам обусловлена одновременной продукцией БЛРС типа CTX-M и пенициллиназы типа SHV.

В Екатеринбурге в 1999 г. 16,7% сальмонелл были резистентны к ампициллину и ампициллину/сульбактаму, 13,8% к тетрациклину и 6,1% к ко-тримоксазолу. Все исследованные штаммы были чувствительны к фторхинолонам. Кроме того, был выделен клинический штамм, резистентный к цефалоспоринам III поколения, но чувствительный к фторхинолонам и ко-тримоксазолу.



Mycobacterium tuberculosis. Одной из основных ведущих причин неэффективности терапии туберкулеза является увеличение частоты множественнорезистентных M.tuberculosis, то есть устойчивых минимум к изониазиду и рифампицину.

В 1991-1994 гг. в девяти областях северо-западного региона России (Республика Коми, Псков, Новгород, Санкт-Петербург и Ленинградская область, Карелия, Вологда, Архангельск, Мурманск) частота выделения M.tuberculosis, первично резистентных к одному и более противотуберкулезным препаратам, увеличилась с 17% до 24%. Уровень вторичной резистентности существенно не изменился и составил около 50%.

В Ленинградской области в 1992-1994 гг. первичная резистентность составила 29,2%, частота выделения первичных множественнорезистентных штаммов достигала 5,1% без значительных колебаний в течение всего периода исследования. Вторичная устойчивость внелегочных изолятов в 1989-1994 гг. составила 45,6% по сравнению с 69,5% у штаммов, выделенных из респираторных образцов. Распространенность вторичных множественнорезистентных штаммов, полученных из респираторных образцов, значительно увеличилась и составила 33% по сравнению с 8,8% для внелегочных штаммов микобактерий.

В Ивановской области при тестировании 222 штаммов первичная множественная резистентность составила в 1998 г. 9%, а частота множественноустойчивых штаммов среди 54 изолятов, выделенных у пациентов, получавших ранее противотуберкулезные препараты, составила 25,9%.

В Томске (1995-1996 гг.) первичная резистентность микобактерий достигала 27,7%, множественная резистентность - 3,4%. Исследования, проведенные в 1999 г., выявили уже 6,5% (27/417) множественноустойчивых штаммов у пациентов, не получавших ранее терапию, и 26,7% (62/232) у больных, ранее лечившихся противотуберкулезными средствами.

Приведенные данные показывают, что в последние годы наблюдается выраженная тенденция роста множественной устойчивости в целом и, особенно, к двум основным препаратам для лечения туберкулеза: изониазиду и рифампицину.



ВОЗБУДИТЕЛИ НОЗОКОМИАЛЬНЫХ ИНФЕКЦИЙ

S.aureus и коагулазонегативные стафилококки. В многоцентровом исследовании чувствительности стафилококков в Москве и Санкт-Петербурге (1998 г.) были выявлены различия в распространении резистентности в отдельных стационарах. При этом устойчивость к оксациллину значительно чаще встречалась среди КНС (до 65,9%), чем среди S.aureus (до 40%). В целом в Москве частота выделения MRSA составила 33,4%, в Санкт-Петербурге - 4,1%. Все резистентные к оксациллину стафилококки были чувствительны к ванкомицину, а 95%, 84% и 70% штаммов MRSA были чувствительны к фузидиевой кислоте, рифампицину и ципрофлоксацину, по сравнению с 80%, 85% и 61% КНС, соответственно.

Результаты многоцентрового исследования распространенности резистентности S.aureus в ОРИТ России (исследование СтЭнт), проведенного в 2001 г., показаны на рис. 7.



Рисунок 7. Резистентность (%) нозокомиальных штаммов S.aureus (СтЭнт, 2001 г.).

Сокращения:


ВАН - ванкомицин; ЛНЗ - линезолид; ТСМ - ко-тримоксазол;
РФМ - рифампицин; ЛВФ - левофлоксацин; КЛД - клиндамицин;
ОКС - оксациллин; ГЕН - гентамицин; ТЕТ - тетрациклин;
ЭРИ - эритромицин; ХФ - хлорамфеникол.
Enterococcus spp. В Москве и Санкт-Петербурге в 1995-1996 гг. было выявлено 16% E.faecalis, резистентных к ампициллину, при этом наблюдались значительные различия частоты устойчивости между отдельными лечебными учреждениями. Высокий уровень резистентности к аминогликозидам составил 44% к стрептомицину и 25% к гентамицину. Не было выявлено умереннорезистентных или резистентных к ванкомицину штаммов энтерококков. В отличие от E.faecalis, 75% штаммов E.faecium было устойчиво к ампициллину, чувствительность к другим антибиотикам существенно не отличалась.

С эпидемиологической целью было проведено определение чувствительности штаммов энтерококков, выделенных из кала у детей, находящихся в отделении выхаживания недоношенных новорожденных (табл. 8).



Таблица 8. Резистентность (%) Enterococcus spp. к АМП у недоношенных новорожденных
(Смоленск, 1995-1996 гг.)


Антибиотик

E.faecalis (N=33)

E.faecium (N=61)

Ампициллин

3

77

Гентамицин

0

64

Стрептомицин

3

56

Ванкомицин

  9*

  10*

Хлорамфеникол

39

54

Рифампицин

88

93

Хинупристин/
дальфопристин

15

3

* Умереннорезистентные штаммы.
В целом E.faecium отличались более высокой резистентностью к антибиотикам, за исключением ванкомицина, активность которого в отношении всех энтерококков была сравнимой, и хинупристина/дальфопристина (3% резистентных E.faecium против 15% - E.faecalis). Только 3% E.faecalis были устойчивы к ампициллину, в отличие от 77% E.faecium. Большинство E.faecium демонстрировали высокий уровень резистентности к аминогликозидам (64% к гентамицину и 56% к стрептомицину).

В рамках многоцентрового проспективного исследования распространенности антимикробной резистентности нозокомиальных грамотрицательных возбудителей в 28 ОРИТ 15 городов России (NPRS-3), проведенного в 1997-1999 гг., были изучены 2664 микроорганизма (табл. 9, рис. 8, 9).



Семейство Enterobacteriaceae. Резистентность бактерий семейства Enterobacteriaceae широко варьирует между отдельными стационарами, во многом являясь отражением политики назначения АМП.

Таблица 9. Резистентность (%) нозокомиальных штаммов семейства Enterobacteriaceae (NPRS-3).

 

E.coli
(N=489)

K.pneumoniae
(N=389)

Proteus spp.
(N=263)

Enterobacter spp.
(N=203)

Ампициллин

49,7

-

71,5

80,3

Пиперациллин

40,9

68,4

37,6

44,8

Пиперациллин/
тазобактам

6,3

30,1

8,7

29,1

Амоксициллин/
клавуланат

35,8

56,0

32,7

89,7

Цефуроксим

19,2

57,3

51,3

63,1

Цефотаксим

11,0

37,5

20,9

29,1

Цефтриаксон

11,5

40,4

17,5

30,5

Цефтазидим

7,8

33,7

6,9

24,6

Имипенем

0

0

0

0

Гентамицин

20,9

55,8

43,3

24,1

Амикацин

2,2

9,0

3,4

2,5

Ципрофлоксацин

8,4

12,9

8,7

5,9

Штаммы E.coli были наиболее резистентны к ампициллину, пиперациллину, амоксициллину/клавуланату, цефуроксиму. Максимально активным в отношении E.coli были имипенем, к которому сохраняли чувствительность все штаммы E.coli, пиперациллин/тазобактам (резистентность 6,3%), цефалоспорины III поколения: цефтазидим (резистентность 7,8%), цефотаксим и цефтриаксон (резистентность около 11%).

Отмечен высокий уровень резистентности K.pneumoniae ко всем исследованным АМП, за исключением амикацина (резистентность - 9%) и имипенема (резистентность - 0%). Штаммы Proteus spp. были наиболее резистентны к ампициллину, цефуроксиму, пиперациллину, амоксициллину/клавуланату и гентамицину. Имипенем проявлял активность в отношении всех Proteus spp., высокая активность также отмечена у цефтазидима (резистентность 6,9%) и амикацина (резистентность 3,4%). Штаммы Enterobacter spp. были высокорезистентны к пиперациллину и цефуроксиму, наиболее активным был имипенем (резистентность 0%).

Pseudomonas aeruginosa. В многоцентровом исследовании NPRS-3 (рис. 8), синегнойная палочка отличалась очень высоким уровнем резистентности к гентамицину (61,3%), а также к пиперациллину, пиперациллину/тазобактаму, ципрофлоксацину. Наиболее активными в отношении P.aeruginosa являлись амикацин (резистентность 6,7%) и цефтазидим (резистентность 11,2%).

Рисунок 8. Резистентность (%) нозокомиальных штаммов P.aeruginosa (NPRS-3).

Сокращения:


ППЦ - пиперациллин; ППТ - пиперациллин/тазобактам; ЦТД - цефтазидим;
ИМП - имипенем; ГЕН - гентамицин; АМК - амикацин; ЦИП - ципрофлоксацин.
Acinetobacter spp. Штаммы Acinetobacter spp., исследованные в рамках проекта NPRS-3 (рис. 9), были наиболее резистентны к пиперациллину, пиперациллину/тазобактаму, цефтазидиму, гентамицину, ципрофлоксацину. Наиболее активными АМП в отношении Acinetobacter spp. являлись имипенем (резистентность 0%) и амикацин (резистентность 8,7%).

Рисунок 9. Резистентность (%) нозокомиальных штаммов Acinetobacter spp. (NPRS-3).

Сокращения:


ППЦ - пиперациллин; ППТ - пиперациллин/тазобактам; ЦТД - цефтазидим;
ИМП - имипенем; ГЕН - гентамицин; АМК - амикацин; ЦИП - ципрофлоксацин.
Обобщая данные исследования NPRS-3, необходимо отметить высокий уровень резистентности грамотрицательных нозокомиальных возбудителей к ампициллину, амоксициллину/клавуланату, пиперациллину, цефуроксиму и гентамицину, тогда как имипенем и амикацин были активными в отношении большинства исследованных штаммов.

В исследовании Micromax (табл. 10), выполненном в 1998 г. в 8 стационарах Москвы, Смоленска, Екатеринбурга, отмечена низкая частота устойчивости E.coli и Proteus spp. к β-лактамам с незначительными различиями между отдельными центрами. В то же время, выявлена высокая резистентность Klebsiella spp. к цефалоспоринам III поколения (31-40%). Резистентность к цефепиму была почти в два раза меньше - 16%. Не было выявлено штаммов кишечных палочек, протеев и клебсиелл, устойчивых к имипенему.



Таблица 10. Резистентность (%) нозокомиальных штаммов семейства Enterobacteriaceae
(Micromax, 1999 г.)


Антибиотик

E.coli

Proteus spp.

Klebsiella spp.

Пиперациллин/тазобактам

3

1

17

Цефтриаксон

13

10

40

Цефтазидим

5

3

31

Цефепим

3

3

16

Имипенем

0

0

0

Ципрофлоксацин

12

15

14

В заключение необходимо отметить, что приведенные в настоящей главе сведения, разумеется, не могут считаться исчерпывающими и далеко не в полной мере отражают состояние резистентности к АМП в России. Практически отсутствуют достоверные данные о резистентности анаэробных бактерий, вирусов и грибов. Это подчеркивает чрезвычайную важность проведения постоянного мониторинга резистентности микроорганизмов к АМП с обобщением данных, полученных с применением единой методики.


Клинико-фармакологическая характеристика антиинфекционных химиопрепаратов.
Общие особенности антиинфекционных химиопрепаратов

Антиинфекционные химиопрепараты (препараты) представляют собой самую многочисленную группу ЛС. Так, в России в настоящее время используется только 30 различных групп антибиотиков, а общее число АМП (без учета генериков) приближается к 200.

Разделение антиинфекционных препаратов на группы по преимущественной активности базируется на классификации возбудителей инфекционных заболеваний человека. В настоящее время выделяют шесть групп возбудителей инфекций: прионы, вирусы, бактерии, грибы, паразитические простейшие, паразитические черви и антроподы. Последние чаще всего представлены членистоногими эктопаразитами - чесоточными клещами, вшами. Исходя из этого выделяют различные группы химиопрепаратов, прчем наиболее широко распространены антибактериальные препараты и практически нет антиприоновых препаратов.

Уникальные особенности антиинфекционных препаратов

Все антиинфекционные препараты, несмотря на различия химической структуры и механизма действия, объединяет ряд уникальных качеств.

Во-первых, в отличие от большинства других ЛС, мишень (рецептор) антиинфекционных препаратов находится не в тканях человека, а в клетке микроорганизма или паразита.

Во-вторых, активность антиинфекционных препаратов не является постоянной, а снижается со временем, что обусловлено формированием лекарственной устойчивости (резистентности). Резистентность - неизбежное биологическое явление и предотвратить ее практически невозможно.

В-третьих, резистентные возбудители представляют опасность не только для пациента, у которого они были выделены, но и для многих других людей, даже разделенных временем и пространством. Поэтому борьба с лекарственной устойчивостью в настоящее время приобрела глобальные масштабы.

О классификации антиинфекционных препаратов

Общепризнанной терминологии и классификации антиинфекционных препаратов не существует. Используются различные термины, имеющие одинаковый смысл. Например, противогрибковые, антимикотические или антифунгальные препараты. Другой пример синонимов: антигельминтные и противогельминтные, антипаразитарные и противопаразитарные препараты.

Традиционно АМП делятся на природные (собственно антибиотики, например, пенициллин), полусинтетические (продукты модификации природных молекул: амоксициллин, цефазолин, хинидин) и синтетические (сульфаниламиды, нитрофураны). В настоящее время такое деление потеряло актуальность, так как ряд природных АМП получают путем синтеза (хлорамфеникол), а некоторые препараты, которые обычно называют антибиотиками (фторхинолоны), de facto являются синтетическими соединениями.

Хорошо известно деление АМП, как и других лекарственных препаратов, на группы и классы. Такое деление имеет большое значение с точки зрения понимания общности механизмов действия, спектра активности, фармакокинетических особенностей, характера НР и т.д. Между препаратами одного поколения и отличающимися только на одну молекулу могут быть существенные различия. Например, ганцикловир отличается от ацикловира наличием дополнительной гидроксиметильной группы. Благодаря этому ганцикловир стал первым химиопрепаратом, активным против ЦМВ, его внутриклеточный период полувыведения, по сравнению с таковым ацикловира, вырос с 1 ч до 24 ч.

Неверно рассматривать все препараты, входящие в одну группу (класс, поколение), как взаимозаменяемые. Так, среди цефалоспоринов III поколения клинически значимой активностью в отношении синегнойной палочки обладают только цефтазидим и цефоперазон. Поэтому даже при получении данных in vitro о чувствительности P.aeruginosa к цефотаксиму или цефтриаксону их не следует применять для лечения синегнойной инфекции, так как результаты клинических испытаний свидетельствуют о высокой частоте неэффективности.

Избирательность действия

Антимикробные химиопрепараты (препараты) - вещества, избирательно угнетающие жизнедеятельность микроорганизмов. Термин антиинфекционные химиопрепараты (препараты) имеет более широкое значение, так как он включает в себя вещества, избирательно действующие на гельминты и эктопаразиты. Под избирательным действием понимают активность только в отношении возбудителей инфекции, при сохранении жизнеспособности клеток хозяина, и действие не на все, а на определенные роды и виды микроорганизмов и паразитов. Например, фузидиевая кислота обладает высокой активностью в отношении стафилококков, включая метициллинорезистентные, но не действует на пневмококки и БГСА.



Антисептики и дезинфектанты

Следует отличать АМП от антисептиков, которые действуют на микроорганизмы неизбирательно и применяются для уничтожения микрофлоры на поверхности живых тканей, так как из-за токсичности их нельзя применять системно (перорально, парентерально). К антисептикам относятся, например, этиловый спирт, гексахлорафен. В медицине также широко применяются дезинфектанты, предназначенные для неизбирательного уничтожения микроорганизмов вне живого организма (предметы ухода, поверхности и пр.).



Спектр активности

С избирательностью тесно связано понятие о широте спектра активности антиинфекционных препаратов. Однако с позиций сегодняшнего дня деление на препараты широкого и узкого спектра действия представляется условным и подвергается серьезной критике, в первую очередь из-за отсутствия критериев для такой градации.

Спорным является представление о том, что препараты широкого спектра активности более «надежны», более «сильны», а применение антибиотиков с узким спектром в меньшей степени способствует развитию резистентности и т.д. При этом не учитывается приобретенная резистентность, вследствие чего, например, тетрациклины, которые в первые годы применения были активны в отношении большинства клинически значимых микроорганизмов, в настоящее время потеряли значительную часть своего спектра активности именно из-за развития приобретенной резистентности у пневмококков, стафилококков, гонококков, энтеробактерий. Цефалоспорины III поколения обычно рассматриваются как препараты с широким спектром активности, однако они не действуют на MRSA, многие анаэробы, энтерококки, листерии, атипичные возбудители (хламидии, микоплазмы) и др.

Более целесообразно рассматривать АМП с точки зрения клинической эффективности при инфекции определенной органной локализации, так как клинические доказательства эффективности, полученные в хорошо контролируемых (сравнительных, рандомизированных, проспективных) клинических испытаниях, имеют несомненно более важное значение, чем условный ярлык типа «антибиотик широкого» или «узкого» спектра активности.





Поделитесь с Вашими друзьями:
1   ...   5   6   7   8   9   10   11   12   ...   70


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

    Главная страница