Вопросы к экзамену учебной дисциплины «Биохимия» для специальности 060101 Лечебное дело, 060103 Педиатрия



страница76/257
Дата13.01.2020
Размер2.87 Mb.
ТипВопросы к экзамену
1   ...   72   73   74   75   76   77   78   79   ...   257
Учебник Николаева стр. 228-231
26. Дегидрирование субстратов и окисление водорода как источник энергии для син­теза АТФ. Окислительное фосфорилирование, хемиоосмотическая теория синтеза АТФ, протонная АТФ-аза, коэффициент эффектив­ности дыхания (Р/О).

Окислительное фосфорилирование — один из важнейших компонентов клеточного дыхания, приводящего к получению энергии в виде АТФ. Субстратами окислительного фосфорилирования служат продукты расщепления органических соединений — белкижиры и углеводы. Процесс окислительного фосфорилирования проходит на кристах митохондрий.

Однако чаще всего в качестве субстрата используются углеводы. Так, клетки головного мозга не способны использовать для питания никакой другой субстрат, кроме углеводов.

Предварительно сложные углеводы расщепляются до простых, вплоть до образования глюкозы. Глюкоза является универсальным субстратом в процессе клеточного дыхания. Окисление глюкозы подразделяется на 3 этапа:

гликолиз;

  1. окислительное декарбоксилирование и цикл Кребса;

  2. окислительное фосфорилирование.

Процесс окислительного фосфорилирования осуществляется пятым комплексом дыхательной цепи митохондрий — Протонная АТФ-синтаза, состоящая из 9 субъединиц 5 типов:

  1. 3 субъединицы (γ,δ,ε) способствуют целостности АТФ-синтазы

  2. β субъединица является основной функциональной единицей. Она имеет 3 конформации:



      1. L-конформация — присоединяет АДФ и Фосфат (поступают в митохондрию из цитоплазмы с помощью специальных переносчиков)

      2. Т-конформация — к АДФ присоединяется фосфат и образуется АТФ

      3. О-конформация — АТФ отщепляется от β-субъединицы и переходит на α-субъединицу.



          1. Для того, чтобы субъединица изменила конформацию необходим протон водорода, так как конформация меняется 3 раза необходимо 3 протона водорода. Протоны перекачиваются из межмембранного пространства митохондрии под действием электрохимического потенциала.

  1. α-субъединица транспортирует АТФ к мембранному переносчику, который «выбрасывает» АТФ в цитоплазму. Взамен из цитоплазмы этот же переносчик транспортирует АДФ. На внутренней мембране митохондрий также находится переносчик Фосфата из цитоплазмы в митохондрию, но для его работы необходим протон водорода. Такие переносчики называются транслоказами.

ХЕМИОСМОТИЧЕСКАЯ ТЕОРИЯ

(от позднегреч. chemeia — химия и греч. osmos — толчок, давление), учение о механизме преобразования энергии в биол. мембранах при синтезе аденозинтрифосфорной к-ты (АТФ). Разработана П. Митчеллом в 1961—66. Согласно исходным представлениям Митчелла, запасание энергии в АТФ происходит вследствие предварит, накопления зарядов на стенках мембраны, создания мембранного потенциала и разности концентраций протонов. Разность электрохимич. потенциалов ионов водорода на сопрягающих мембранах (внутр. мембраны митохондрий, тилакоиды хлоропластов, мембраны бактерий) возникает за счёт энергии, выделяемой при деятельности цепи окислит.-восстановит, ферментов, или за счёт поглощённых квантов света. Трансмембранные электрохимич. потенциалы ионов могут служить источником энергии не только для синтеза АТФ, на и для транспорта веществ, движения бактериальных клеток и др. энергозависимых процессов.
Учебник березов стр. 221-224

Учебник николаева стр. 232-233

27. Условия, обеспечивающие физиологический уровень работы дыхательной цепи. Дыхательный контроль, коэффициент Р/О. Ингибиторы тканевого дыхания. Разобщение дыхания и окислительного фосфорилирова­ния, последствия.

Дыхательный контроль

Сопряжение окисления с фосфорилированием в митохондриях отличается прочностью: если невозможен синтез АТФ, то прекращается и перенос электронов в дыхательной цепи. Эти реакции можно изучать in vitro в суспензии митохондрий. Если в инкубационной смеси есть все исходные вещества, за исключением АДФ, то поглощения 02 (дыхания) не наблюдается.

После внесения АДФ сразу же начинается и дыхание, и синтез АТФ; по мере расходования АДФ скорость дыхания снижается и совсем прекращается, когда вся АДФ превратится в АТФ.

Зависимость дыхания митохондрий от концентрации АДФ называют дыхательным контролем. Этот механизм регуляции имеет очень важное значение, так как в результате его действия скорость синтеза АТФ определяется потребностью клетки в энергии: при увеличении расходования АТФ в клеточных процессах (реакции, катализируемые синтетазами, транспорт ионов и др.) увеличивается концентрация АДФ, а это автоматически ведет к ускорению дыхания и фосфорилирования. Можно сказать, что темп работы митохондриям задается фактическими затратами АТФ.

Механизм дыхательного контроля отличается высокой чувствительностью и точностью, поэтому относительные концентрации АТФ и АДФ в тканях изменяются в узких пределах, в то время как потребление энергии клеткой (т. е. частота оборотов цикла АДФ-АТФ) может изменяться в десятки раз.Некоторые вещества разобщают окисление и фосфорилирование. Примером может служить 2,4-динитрофенол (рис. 8.6). Это липофильное вещество легко диффундирует через митохондриальную мембрану как в ионизированной, так и в неионизированной форме и, следовательно, может переносить ионы водорода через мембрану в сторону их меньшей концентрации.Потребление кислорода и окисление субстратов при этом продолжаются, но синтез АТФ, естественно, невозможен.

Поскольку энергия окисления при разобщении рассеивается в форме теплоты, то разобщители повышают температуру тела (пирогенное действие).

1.      Недостаток субстратов окисления (углеводов, липидов, т.е. пищи).

 

2.     

Нарушение работы ферментов в дыхательной цепи:

1.     

Дефект апофермента (нарушен синтез белковой части фермента).

2.     

Дефект кофермента (нарушение синтеза коферментов из-зи недостатка витаминов В2,В5, К).

3.     

Недостаток кислорода.

4.     

Действие ингибиторов.

Аминобарбитал ингибирует перенос протонов и электронов на участке НАД/ФАД, окисление НАДзависимых субстратов прекращается.

            Антимицин ингибирует перенос электронов на участке цитохром b, цитохром с.

            Цианады ингибируют перенос электронов на участке цитохромоксидазы/кислород.

            При большинстве физиологических состояний перенос электронов сопряжен с окслительным фосфорилированием.

            Ряд соединений может вызвать разобщение тканевого дыхания и окислительного фосфорилирования. Разобщителями этих процессов являются следующие соединения: 2,4 – динитрофенол, гормон щитовидной железы – тироксин, дикумарин и его производные, жирные кислоты.

            Разобщение окислительного фосфорилирования и тканевого дыхания может быть биологически полезным. Разобщение представляет собой способ генерирования тепла для поддержания температуры тела у зимнеспящих животных и млекопитающих адаптированных к холоду. В качестве разобщителя выступают жирные кислоты, которые накапливаются в бурой жировой ткани. Такой бурый жир есть и у новорожденных детей, что позволяет поддерживать температуру тела при еще несовершенной системе терморегуляции.

            У больных с гиперфункцией щитовидной железы отмечается повышение температуры тела, что обусловлено разобщением процессов тканевого дыхания и окислительного фосфорилирования, вызванного тироксином.

            При недостатке кислорода в тканях процесс тканевого дыхания затруднен и в тканях протекает субстратное окисление.

            Субстратное окисление – это процесс окисления, при котором конечным акцептором электронов является субстрат, а не кислород.

            Субстратное окисление – это аварийный источник получения энергии при недостатке кислорода.

            Недостаток кислорода (гипоксия) возникает в организме при физической работе, при подъеме в горы, опускании под воду, при заболеваниях органов дыхания, сердечно-сосудистой системы и кроветворной системы.

            Субстратное окисление энергетически менее выгодно, чем тканевое дыхание, т.к. редокс-потенциалы субстратов отличаются незначительно.

            В организме наряду с окислительным фосфорилированием процессом, дающим энергию является субстратное фосфорилирование.

            Субстратное фосфорилирование – это процесс образования макроэргических соединений за счет макроэргических связей субстрата.

            Важнейшим макроэргическим соединением является АТФ.

            Энергия макроэргических связей аккумулируется в ряде соединений: креатинфосфат, 1,3-дифосфоглицерат, ГТФ и др.

                       

                                          Биологическое окисление

 

Тканевое дыхание            Свободное окисление           Субстратное окисление

 

Связано с                                  Энергия

окислительным                        выделяется

фосфорилированием               в виде тепла     

 

Энергия выделяется

в виде АТФ

 

 

                                                Фосфорилирование

 

Окислительное фосфорилирование             Субстратное фосфорилирование

связано с мембранами митохондрий           не связано с мембранами

                                                                          митохондрий

 

Процесс

Ингибиторы тканевого дыхания

Разобщители тканевого дыхания и окислительного фосфорилирования

Ингибиторы синтеза АТФ

 

Аминобарбитал, ротенон, антимизин, цианиды

2,4-динитрофенол, жирные кислоты, дикумарин и его производные, тироксин

Антибиотики олигомицин, рутамицин

Ионофоры:

Валиномицин, грамицидин


 

            Одно время пытались использовать некоторые разобщающие агенты для борьбы с ожирением за счет понижения эффективности синтеза АТФ. Но эти вещества оказались крайне токсичны, и потому от такого их применения отказались.

            Существует еще группа веществ как ионофоры, т.е. переносчики ионов. Это жирорастворимые вещества, способные связывать определенные ионы и переносить их через мембрану. Ионофоры отличаются от разобщителей тем, что ионофоры переносят через мембрану не ионы водорода, а какие-нибудь другие катионы. Например, токсичный антибиотик валиномицин образует жирорастворимый комплекс с ионами К+, легко проходящий через внутреннюю мембрану митохондрий, тогда как в отсутствие валиномицина ионы К+ проникают сквозь нее с трудом. Ионофор грамицидин облегчает проникновение ионов К+ иNa+.

            Ионофоры и разобщители подавляют окислительное фосфорилирование, увеличивая проницаемость мембраны для ионов Н+, К+ или Na+.

Окисление, не сопровождающееся синтезом АТФ, называется свободным окислением. В этом случае энергия выделяется в виде тепла. Это может наблюдаться при действии токсинов и сопровождается повышением температуры тела.

При нарушении тканевого дыхания и окислит фосфорилирования будет происходить нарушение образования АТФ,энергетическое голодание,что приведет к паталогическим явлениям(ишемии миокарда и головного мозга,инфекционных процессов,снижению иммунитета,синтезов,активности ферментов, истощению) и гибели.


Учебник николаев стр. 234, 233,

Процесс

Ингибиторы тканевого дыхания

Разобщители тканевого дыхания и окислительного фосфорилирования

Ингибиторы синтеза АТФ

 

Аминобарбитал, ротенон, антимизин, цианиды

2,4-динитрофенол, жирные кислоты, дикумарин и его производные, тироксин

Антибиотики олигомицин, рутамицин

Ионофоры:

Валиномицин, грамицидин


 Окисление, не сопровождающееся синтезом АТФ, называется свободным окислением. В этом случае энергия выделяется в виде тепла. Это может наблюдаться при действии токсинов и сопровождается повышением температуры тела.

При нарушении тканевого дыхания и окислит фосфорилирования будет происходить нарушение образования АТФ,энергетическое голодание,что приведет к паталогическим явлениям(ишемии миокарда и головного мозга,инфекционных процессов,снижению иммунитета,синтезов,активности ферментов, истощению) и гибели.



Поделитесь с Вашими друзьями:
1   ...   72   73   74   75   76   77   78   79   ...   257


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

    Главная страница