Елена Петровна Гора учебное пособие



страница12/37
Дата23.04.2016
Размер9.99 Mb.
ТипУчебное пособие
1   ...   8   9   10   11   12   13   14   15   ...   37

Рис. 3.4. Схема патогенеза нарушений, обусловленных влиянием невесомости (по: И. Д. Пестов, 1979)

Профилактические воздействия на некоторые промежуточные звенья этой патогенетической цепи могут осуществляться с помощью фармакологических и гормональных препаратов, а конечные эффекты (снижение ортостатической устойчивости после полета) – с помощью средств, оказывающих избыточное давление на нижнюю половину тела.

Таким образом, в отношении профилактики последствий гиподинамического синдрома существует вполне реальная конструктивная основа, состоящая в создании постоянной (с помощью нагрузочных костюмов) и переменной (посредством выполнения комплексов упражнений на специальных тренажерах) нагрузки на костно-мышечный аппарат, использовании фармакологических препаратов и средств неспецифической профилактики.

Разумеется, действие большинства описанных выше профилактических средств не является строго избирательным, часто распространяется на смежные звенья патогенеза и, таким образом, выходит за рамки предложенной классификации, которая подчеркивает лишь преимущественные эффекты, на которые рассчитано то или иное средство. К примеру, действие отрицательного давления на нижнюю половину тела, помимо перераспределения крови, сопровождается также осевой нагрузкой на организм, величина и точки приложения которой определяются особенностями конструкции вакуумной емкости. Кроме того, декомпрессия нижней половины тела способна воспроизводить и ощущения, характерные для действия силы тяжести. Применение вакуумной емкости при постельном режиме вызывает, в частности, ощущение пребывания в вертикальной позе. Другим примером профилактического воздействия, обладающего широким спектром и адресованного, по существу, ко всем пусковым механизмам изменений, связанных с невесомостью, служит применение бортовых центрифуг с коротким радиусом. Тем не менее на современном уровне знаний, теоретической и технической вооруженности достижение относительно гармоничного профилактического эффекта может быть обеспечено лишь комплексом профилактических воздействий, адресованных различным звеньям патогенетической цепи.



3.5. Влияние вибраций

Вибрация – механические колебания материальных точек или тел. Простейшим видом вибрации является гармоническое колебание, графически изображаемое синусоидой.

Виброускорение, или виброперегрузка, – это максимальное изменение скорости колебаний в единицу времени, обычно выражается в см/с2.

В практике авиационной и космической медицины чаще применяют единицы ускорения, кратные ускорению свободного падения g. Вибрация характеризуется амплитудой и частотой, из которых выводят скорость и ускорение. Частота вибрации – число колебаний в единицу времени, измеряется в герцах (Гц). (Герц – единица частоты, равная одному колебанию в секунду.) Важным параметром вибрации является ее интенсивность, или амплитуда. Если вибрация представляет собой простое синусоидальное колебание около неподвижной точки, то амплитуда определяется как максимальное отклонение от этой позиции (измеряется в миллиметрах).

Физические характеристики вибрации кабины космического корабля изучены недостаточно полно. Частота вибрации, возникающей на активном участке, составляет около 50 Гц. Виброперегрузка при этом не превышает 1 g. Главные частоты вибрации конструкций больших космических аппаратов обычно лежат в диапазоне от 2 до 15 Гц.

Вибрация может передаваться человеку непосредственно при прикосновении к вибрирующим предметам и через промежуточные среды достаточной плотности (жидкость, твердые тела). Она может воздействовать на человека непосредственно через опорные поверхности, например ложемент космонавта, и через некоторые вторичные контактные предметы, такие как подголовник, рукоятки управления. Опосредованные воздействия вибрации проявляются в вибрации приборов и их стрелок в космическом корабле, что затрудняет считывание показаний во время запуска.

Считают, что вибрация воспринимается специфическими виброрецепторами во всех тканях тела и особенно в коже.

Тело человека – сложная вибрационная система с собственным резонансом. Некоторые анатомические структуры и органы на определенных частотах получают колебания большей амплитуды, чем другие. Установлено, что главный резонанс тела человека для вибрации в направлении вертикальной оси лежит в частотах 4–5 Гц. Различные ткани имеют резонансные частоты 12–24 Гц. Наиболее неприятны и даже опасны для здоровья вибрации резонансных частот. Усиление колебаний при резонансе обратно пропорционально демпфированию системы. При резонансе относительно малые силы на критической частоте вызывают большие колебания системы, что может привести к механическим повреждениям тканей и органов.

При длительном воздействии вибрации на организм человека развиваются местные и общие морфофункциональные изменения, что может обусловить так называемую вибрационную болезнь, при которой нарушаются функции различных систем организма.

По распространению в организме вибрации разделяют на общие и местные (локальные). В первом случае они вызывают заметное сотрясение всего организма, во втором – вовлекают в колебательные движения лишь его отдельные участки. Однако это не значит, что физиологическое действие локальных вибраций ограничивается участком их распространения в тканях. Поскольку колебательные движения раздражают периферические нервные образования, они неизбежно влияют на центральную нервную систему и рефлекторно могут изменять функции отдельных органов и тканей. Влияние на организм местной вибрации качественно отличается от воздействия общей вибрации.

Общая вибрация возникает на активном участке космического полета, когда колебания двигателя передаются на конструкцию ракеты, и иногда при аэродинамических воздействиях на космический корабль во время прохождения плотных слоев атмосферы.

Вибрация представляет собой общебиологический фактор, действующий на любые клетки организма, в том числе на кору головного мозга. Следовательно, чем шире распространяется вибрация по организму, тем больше тканевых, в частности нервных, элементов вовлекается в сферу ее воздействия.

Низкочастотные вибрации служат специфическим раздражителем вестибулярного аппарата, при длительном воздействии нарушающим его функции.

В ответ на постоянную низкочастотную вибрацию всего тела происходят разнообразные изменения в клетках и их биохимических компонентах, в моче и крови. Эти изменения, по-видимому, отражают неспецифическую реакцию на стресс-фактор. Адаптация к вибрационному фактору, вероятно, центральная, хотя возможно некоторое привыкание и на уровне рецепторов.

Вибрация близка к шуму не только по природе, но и по физиологическим эффектам. Она значительно отягощается действием шума.

Множество работ указывает на изменение под влиянием вибрации функций дыхания, сердечно-сосудистой системы, пищеварения, опорно-двигательного аппарата и т. д. Сердечно-сосудистые и сердечно-легочные реакции на вибрации средней интенсивности сводятся к таким же вегетативным сдвигам, как и при умеренной работе или эмоциональном напряжении: увеличение числа сердечных сокращений и дыхательных движений, легочной вентиляции и потребления кислорода.

Вибрации, действующие на организм в космическом полете, вполне переносимы человеком. Виброперегрузка при этом обычно не превышает 0,1 g, лишь в редких случаях достигая 1 g. Отрицательные влияния вибрации на организм снижаются путем применения демпфирующих устройств.

При профессиональном отборе необходимо учитывать индивидуальную реакцию организма на вибрационное воздействие.



3.6. Влияние длительных и интенсивных звуковых нагрузок

Шум – это беспорядочная совокупность звуковых волн различных частот и амплитуд, распространяющихся в воздухе и воспринимаемых ухом человека. Диапазон по частоте слышимых звуков для человека простирается от 16 до 20 тыс. Гц. Для практических целей этот диапазон ограничен от 50 до 10 тыс. Гц, как наиболее важный для слухового восприятия. Ухо человека безболезненно воспринимает звуковое давление в диапазоне от 2 x 10-5 Н/м2 (порог слуха) до 20 Н/м2. Разница верхнего и нижнего пределов составляет миллион единиц. Для удобства практического измерения и оценки шумов приняты не линейные единицы, а логарифмические – децибелы (дБ). Величина, характеризующая интенсивность шума или звука, получила название «уровень звукового давления шума» или просто «уровень шума». Это десятичный логарифм отношения измеренного звукового давления к стандартному (близкому к порогу слышимости чистого тона на частоте 1000 Гц), принятому за единицу сравнения.

Однако неблагоприятное воздействие шума зависит не только от уровня шума, но и от частотного состава, т. е. от того, как распределяется интенсивность по частотам (спектр шума). Наконец, вредность шума зависит от степени равномерности его воздействия с течением времени.

Технический прогресс привел к усложнению шумовых характеристик, к распространению шумов различной временной структуры. Известно, что до сих пор измерения проводились исходя из стабильности шумового процесса. Исчерпывающими характеристиками при этом являлись уровнеграммы и спектрограммы, которые позволяли сопоставить измеренный спектр шума с гигиеническими нормами и при необходимости внести поправку на суммарное время его действия. Однако часто в современных условиях трудно правильно оценить шум одномоментным измерением. Шумы ударного происхождения, так называемые импульсные, оценивались теми же приборами и методами, что и стабильные, часто одномоментными измерениями оценивались прерывистые, флюктуирующие и прочие непостоянные шумы. Все это приводило к невозможности сравнения и обобщения результатов, к разноречивости и отсутствию единого мнения исследователей о степени влияния шума на организм. Возникла необходимость выбора и обоснования унифицированной гигиенической оценки шумов различного характера.



Исследованиями установлено, что адекватным критерием для характеристики колебательного процесса (шума), воздействующего на живой организм, является его мощность. Отсюда наиболее правильно непостоянные шумы оценивать эквивалентным по энергии уровнем.

• В настоящее время все шумы подразделяют по характеру спектра на широкополосные и тональные. Широкополосные – с непрерывным спектром шириной более одной октавы, а тональные шумы имеют в спектре слышимые дискретные тона; тональный характер шума устанавливается измерением в 1/3-октавных полосах частот по протяжению уровня в одной полосе над соседними не менее чем на 10 дБ.

• По временным характеристикам шумы подразделяют на постоянные и непостоянные. Постоянные – такие шумы, уровень звука которых за 8-часовой день меняется во времени не более чем на 5 дБА; непостоянные – чей уровень звука за 8-часовой день изменяется во времени более чем на 5 дБА.

Слух, как основная функция звукового анализатора, изучается с различных точек зрения, однако в профпатологическом аспекте главная из них – это исследование состояния слуха как показателя вредного влияния шума. Не вызывает сомнения, что интенсивный шум при ежедневном воздействии медленно и необратимо влияет на звуковоспринимающий отдел анализатора, вызывая потерю слуха, прогрессирующую с увеличением времени экспозиции шума.

Достаточно полно изучена клиника профессиональных потерь слуха от шума (тугоухость), симптоматология этого поражения, ее дифференциальная диагностика. Основные симптомы профессиональной тугоухости – постепенная потеря слуха на оба уха, первоначальное ограничение слуха в зоне 4000 Гц с последующим распространением на более низкие частоты, определяющие способность восприятия речи. Дополнительными признаками тугоухости может быть ряд непостоянных симптомов: звон и шум в голове, гиперемия барабанной перепонки, ее втянутость и т. п.

Профессиональное снижение слуха связано с поражением слухового нерва, а его патологоанатомическая основа заключается в дегенеративных изменениях органа Корти и спирального ганглия.

Экспериментальные исследования последних десятилетий расширили и уточнили данные предыдущих исследований и показали, что под влиянием достаточно интенсивных и длительно действующих звуков наступают дегенеративные изменения как в волосковых клетках кортиева органа, так и в первом нейроне слухового пути – спиральном ганглии, а также в волокнах кохлеарного нерва.

Однако единого мнения о патогенезе, приводящем к стойким и необратимым явлениям в рецепторном отделе анализатора, не существует. Можно выделить два главных направления в определении патогенеза.

• Одно направление исследований придает основное значение первичному механическому действию колебательной энергии (зависимость от звукового давления), приводящему к травматическому повреждению рецепторного отдела слухового анализатора.

• Другое связывает первичные изменения с перераздражением определенных отделов центральной нервной системы, в результате чего возникают изменения во внутреннем ухе.

Некоторые исследователи особую роль в патогенезе тугоухости отводят подкорковым центрам, регулирующим трофику слухового рецептора, другие же считают, что в основе поражения рецептора лежат изменения в центрах головного мозга. Существует точка зрения, указывающая, что тугоухость развивается на почве сосудистых расстройств, наступающих в рецепторном отделе анализатора под влиянием шума.

Изыскания последних лет подтвердили связь между длительным шумовым воздействием и нарушениями в церебральном кровоснабжении. При этом было доказано, что вследствие нарушения нормального кровообращения в височной области создаются неблагоприятные условия для функционирования звукового анализатора, что приводит сначала к временным, а затем, в более поздние сроки, к стойким необратимым нарушениям, снижающим функцию слуха. Степень и скорость развития изменений зависят от количества звуковой энергии, воспринимаемой анализатором.

Многообразие и противоречивость мнений по вопросу патогенеза тугоухости можно объяснить сложностью путей воздействия шума и разнообразием действующих звуковых раздражителей. Действительно, мощные кратковременные акустические раздражители приводят к травматическим изменениям рецептора, тогда как при хроническом (длительном) воздействии менее интенсивного шума нагрузка приходится на центральные звенья звукового анализатора, т. е. механизм развития тугоухости при острой акустической травме и хроническом действии шумов неодинаков.

Максимум потерь слуха приходится на частоты на пол-октавы выше воздействующего тона, однако при длительном воздействии зона влияния расширяется для всех тонов выше воздействующего. Показано, что наиболее неблагоприятными для слуха являются высокочастотные тоны 4000, 2000 и 1000 Гц.

Стремление исследователей обнаружить наиболее ранние признаки действия шума на организм, и в частности на звуковой анализатор, привело к выходу в свет большого числа работ, относящихся к изучению функционального состояния анализатора. С этой целью использовались методы динамической аудиометрии, а также исследования звукового анализатора с помощью определения дифференциальных порогов после шумовых нагрузок. Наиболее широко, особенно за рубежом, используется метод определения временного смещения порогов слуха (ВСП) при различной длительности экспозиции и характере шума. Этот показатель положен в основу сравнения действия различных шумов как критерий для определения чувствительности к шуму, а также в качестве физиологического критерия риска глухоты.

Кроме того, этот показатель использовался в качестве прогнозирования потерь слуха на основании соотношения между постоянными потерями слуха от шума, действующего в течение всего времени работы в шуме, и временными потерями за время дневной экспозиции тем же шумом, измеренными спустя две минуты после экспозиции шумом.

Энергия шума через проводящие пути звукового анализатора трансформируется в различные отделы головного мозга, изменяя в них нормальные процессы динамики высшей нервной деятельности. Интенсивные шумы нарушают равновесие возбудительных и тормозных процессов: отмечаются фазовые состояния, вследствие чего нарушаются и вегетативные реакции при дисбалансе функций вагуса и симпатикуса, чрезмерный шум ведет к запредельному торможению клеток центральной нервной системы. Происходят нарушения высшей нервной деятельности.

Некоторые исследователи придают особое значение ретикулярной формации мозгового ствола. В начальный период воздействия шума активируются ее структуры и наблюдается повышенная активность органов и систем с последующим ослаблением влияния сетчатого образования, вследствие чего развивается тормозной процесс, ведущий к нарушению в деятельности центральной и вегетативной нервных систем организма, а также системы кровообращения. Некоторые исследователи отмечали изменения электрической активности мозга при шумовом воздействии: уплощение электроэнцефалограммы, депрессию альфа-ритма, появление низковольтной активности и другие изменения. От воздействия интенсивного шума повышается или понижается возбудимость рефлексов, наблюдаются изменения функционального состояния нервной системы в виде астенических реакций, астеновегетативного синдрома с характерными жалобами на раздражительность, апатию, ослабление памяти, потливость и т. д.

Исследования по неспецифичности шумового раздражения для клеточных образований звукового анализатора и других структур, например спинно-мозговых ганглиев, показывают, что шум может действовать как непосредственно на клетку, так и опосредованно через нервную систему на нее же и вызывать различные реакции (денатурацию нативных белков, изменение реактивности), приводящие к обратимым или необратимым состояниям клеток, что лежит в основе функциональных повреждений органов и систем.

В последние годы проведены работы по изучению изменений в энергетическом обмене животных при хроническом шумовом воздействии с использованием биохимических, морфологических и электронно-микроскопических методов. Так, показано, что при длительном воздействии шума неблагоприятное влияние возрастает не только от уровня шума, но и от частотного его характера. Высокочастотные шумы (октавная полоса 4000 Гц) по сравнению с эквивалентными по энергии низкочастотными шумами (октавная полоса 125 Гц) вызывают более глубокие нарушения нервной трофики и синтеза макроэргических фосфорных соединений.

Результаты электронно-микроскопического исследования мозга животных, подвергавшихся хроническому (3-месячное воздействие по 6 ч ежедневно) влиянию интенсивного шума (97 дБ), показали значительные изменения ультраструктуры митохондрий и синаптических пузырьков нервных клеток. Синаптические пузырьки в пресинаптических отростках лежали чрезвычайно кучно возле синаптической щели. Отмечено уменьшение размеров пузырьков, а также их количества в радиусе 0,3 мкм от синаптической щели по сравнению с количеством у контрольных животных. Эта картина свидетельствует о нарушении функциональной возможности синапса. Отмеченные изменения ультраструктуры митохондрий, а также наблюдаемое просветление цитоплазмы и неравномерное распределение хроматина в ядре свидетельствовали об угнетении окислительных процессов, о замедлении тканевого метаболизма. Эти изменения ультраструктуры клеток мозга согласуются с данными биохимических исследований, свидетельствующими о нарушении трофики и снижении синтетических возможностей организма.

Известно, что тканевое дыхание во многом зависит от состояния сосудистой сети и проницаемости клеточных мембран для нормального питания их кислородом. Как было сказано выше, при шумовом воздействии у людей наблюдается нарушение регуляции мозгового кровообращения, выражающееся в превалировании спастических реакций сосудов мозга. В последние годы получены новые экспериментальные данные нарушения микроциркуляции и изменения реактивности терминальных сосудов в головном мозге. Так, было показано, что «белый» шум (уровня 100 дБ) вызывает уже через 5 мин после начала озвучивания сосудосуживающую реакцию крупных артерий (более 40 мкм) мозга, реакция более мелких артериальных ветвей наступала позже (на 20–30 мин) и выражалась в увеличении их диаметра. К этому времени спазм крупных артерий проходил, и наблюдалось увеличение функционирования мелких артериальных и венозных сосудов, которые до действия шума оставались невидимыми.

Различие реакций на шум крупных и мелких артериальных сосудов объясняется особенностью регуляции их тонуса. Если реакция крупных сосудов обусловлена нервной регуляцией, то реакции со стороны мелких сосудов объясняются гуморальной регуляцией. Характер кровотока в артериолах и венулах мягкой мозговой оболочки под действием шума почти не меняется, он остается равномерным и ламинарным. Однако при этом происходит значительное уменьшение гематокрита притекающей по сосудам крови, наиболее выраженное в венулах и мелких венозных сосудах.

Эти данные свидетельствуют о быстрой и выраженной реакции пиальных сосудов мозга на действие шума, что может быть причиной циркуляторной гипоксии мозга. Представляется вероятным, что исключение из циркуляции части эритроцитов и уменьшение емкости функционирующего сосудистого русла является причиной наблюдаемой рядом авторов гипоксии, а расширение крупных артериальных сосудов на поверхности мозга и увеличение числа функционирующих артериол можно рассматривать как явление компенсаторное. Изучение особенностей реактивности пиальных сосудов при шумовом воздействии показало, что на фоне этого воздействия происходят закономерные изменения реактивности сосудов головного мозга, выражающиеся в понижении реактивности мышечных элементов сосудов в ответ на ацетилхолин и повышении реактивности при действии адреналина. Эти разнонаправленные изменения и обусловливают спазм артериальных сосудов, отмечаемый при воздействии шума.

Таким образом, шумовое воздействие вызывает генерализованную реакцию в коре и подкорковых структурах мозга, усугубляющуюся сосудистыми нарушениями. С учетом роли ретикулярной формации мозгового ствола в возникновении изменений в центральной нервной системе, в регуляции вазомоторных реакций и деятельности внутренних органов, становятся понятными изменения и нарушения многих физиологических функций, отмечаемые различными исследователями.

Так, шум может нарушать функцию сердечно-сосудистой системы. Отмечены изменения в электрокардиограмме в виде уплощения зубца Т, изменения его величины.

Многочисленны исследования, констатирующие изменения в величине и направленности артериального давления от воздействующих шумов. Другие исследования показывают, что шум влияет на тонус периферических сосудов и особенно капилляров. Наиболее ценными в этой области являются работы, ставящие своей целью не просто констатировать изменение функционального уровня, но и показать связь определенных параметров шумов с качественным и количественным изменением физиологической функции.

«Было показано, что выраженность вегетативных реакций, в частности периферического кровообращения, зависит от ширины спектра шума, т. е. широкополосный шум вызывает максимальные сдвиги в периферическом кровообращении, которые убывают при сужении ширины полосы от целой октавы к 1/3 и к чистому тону. Следует иметь в виду, что если к субъективному восприятию шума имеется привыкание (адаптация), то в отношении вегетативных реакций адаптации к нему не наблюдается.

Янсен, исследуя влияние шума на вегетативные сосудистые реакции, приходит к выводу об отсутствии их «привыкания к шуму» и предлагает заменить термин «адаптация» на «постоянство реакций вегетативной нервной системы на шум».

Наконец, имеется многочисленная группа работ, касающихся изучения здоровья лиц, систематически работающих в условиях тех или иных шумов. Необходимо отметить, что при работе в шумах, интенсивность которых превышает 110 дБ, четко выступают как субъективные жалобы (головная боль, усталость, быстрая утомляемость и др.), так и объективные расстройства со стороны всех систем организма. Причем астенические или невротические состояния устанавливаются после нескольких дней или недель работы в условиях таких шумов, в противоположность тугоухости, которая развивается постепенно в более длительные сроки. Вместе с тем остается неясным, что происходит в дальнейшем: прогрессируют ли неспецифические нарушения с развитием тугоухости или последняя препятствует их развитию? Некоторые наблюдения показывают, что возникшие до развития тугоухости расстройства со стороны нервной регуляции не проходят с годами, когда к ним присоединяются и нарушения в органе слуха.

При работе в шумах более низких уровней может не быть четкой зависимости между субъективной реакцией людей и объективно выявленными нарушениями, особенно когда уровни шумов находятся между 70 и 90 дБ. Вредность шума подтверждается также тем, что у людей, находящихся постоянно в условиях шума, процент общих заболеваний выше, чем у лиц, находящихся в относительно тихих условиях.

Воздействие необычного по своей характеристике шумового фактора прежде всего вызывает ориентировочный рефлекс, который может даже «защитить» организм от вредного действия благодаря изменению поведения (выход из шумовой обстановки). Кроме того, для непосредственной защиты слухового анализатора от акустической перегрузки вступают в строй различные приспособительные механизмы.

Механизмы управления входными устройствами анализаторов, повышающими эффективность восприятия информации, достаточно хорошо изучены, равно как и механизмы улучшения восприятия и анализа слабых раздражителей, а также защиты органов чувств от перегрузки чрезмерно сильными раздражителями. Механизм защиты органа слуха от чрезмерно громких звуков, передаваемых в улитку, защищающий ее очень чувствительные структуры от разрушения, обусловлен особым видом нелинейности среднего уха. Так, при малых и нормальных интенсивностях стремечко вращается вокруг вертикальной оси, заставляя колебаться мембрану овального окна перпендикулярно ее плоскости. Но при больших амплитудах колебаний характер движения косточек меняется, и стремечко начинает вращаться вокруг горизонтальной оси, при этом смещения мембраны овального окна резко уменьшаются. Полагают, что этот механизм, присущий внутренней структуре входной части анализатора, действует без управления со стороны нервной системы, непосредственно под влиянием раздражителя. Еще в 1864 году было показано, что мышцы среднего уха защищают улитку от чрезмерно громких звуков. Мышцы обоих ушей оказывают противодействие даже в том случае, когда звук воздействует только на одно ухо. В дальнейшем было определено, что при действии сильных звуков происходит рефлекторное сокращение мышцы, напрягающей барабанную перепонку и стремянной мышцы. Скрытый период этой реакции равен приблизительно 10 мс. Безусловный рефлекс не оказывает защитного действия против резких акустических щелчков.

Неожиданность внешнего воздействия существенно затрудняет организацию действий организма. И. П. Павлов отметил, что всякий новый раздражитель тотчас же ведет к появлению исследовательского рефлекса. П. К. Анохин указывал, что ориентировочная реакция, как и другие опережающие реакции, является результатом развития приспособительных актов живого организма, результатом приспособления к цепям повторяющихся событий в окружающей организм среде.

По мере повторения периодически следующих звуковых раздражителей отмечается развитие угасательного торможения ориентировочной реакции, причем анализ этих раздражителей, не имеющих определенного сигнального значения, начинает протекать очень быстро и не связан с большим возбуждением анализаторной системы. Однако ориентировочная реакция полностью угаснуть не может. Биологическое продолжение анализа раздражителей имеет вполне определенный смысл потому, что «индифферентный» в данный период времени раздражитель при других условиях может вдруг стать весьма значимым. Если бы анализ раздражителей не продолжался, то это могло бы иметь роковые последствия для организма. Как показали исследования, при строго периодически следующих раздражениях может иметь место отключение их анализа и вновь продолжение его при изменении ритма.

Наряду с ориентировочными рефлексами выделяют адаптационные рефлексы, обеспечивающие приспособление систем анализаторов к воздействиям раздражителей. Благодаря этому обеспечивается постоянная соразмерность отношений между физическими параметрами раздражителя и физиологическими параметрами воспринимающего прибора. Изменения функциональной настройки анализаторов при этом могут рассматриваться как выражение физиологической пластичности по отношению к слабым и нейтрализации – к сильным раздражителям.

По мере привыкания к шумовому раздражителю в нервных центрах развивается процесс торможения. Согласно концепции, которую выдвинул П. В. Симонов, живые реагирующие системы как бы защищены процессом торможения с двух сторон: от очень сильных раздражителей – запредельным торможением и от очень слабых раздражителей – первичным, или адаптивным, торможением. По его мнению, благодаря первичному торможению живая реагирующая система не расходует свой энергетический потенциал «по пустякам» и отвечает возбуждением только на достаточно сильные раздражители. Если приток раздражающих импульсов сравнительно невелик, он постепенно оказывается недостаточным для поддержания возбуждающего состояния клетки, подавляется и угасает. При интенсивном и длительном шумовом воздействии приток раздражающих импульсов нарастает, тормозящие сигналы оказываются неспособными противодействовать возбуждению нервной клетки. И тогда включается более древний и универсальный механизм – запредельное торможение. Знаменательно, что при значительных шумовых воздействиях на организм торможение не сразу приобретает характер запредельного. Только после того, как защитные свойства превентивного торможения оказались недостаточными и возбуждение нервных клеток превысило предел их функциональных возможностей, в центральной нервной системе последовательно возникают следующие стадии запредельного торможения: уравнительная, парадоксальная, ультрапарадоксальная, тормозная.


Каталог: books -> download -> rtf
rtf -> Жизнь Александра Флеминга Андре Моруа
rtf -> Мифы и реальность
rtf -> Курс лекций по госпитальной терапии, написана доступным языком и будет незаменимым помощником для тех, кто желает быстро подготовиться к экзамену и успешно его сдать. Предназначена для студентов медицинских вузов
rtf -> Александр Лихач За гранью возможного Александр Владимирович Лихач в своей новой книге «За гранью возможного»
rtf -> Как пользоваться домашней аптечкой 4 Назначение гомеопатических препаратов 6 «Число горошин»
rtf -> Татьяна Сергеевна Сорокина История медицины Том I часть Первобытное общество
rtf -> Татьяна Демьяновна Попова книга
rtf -> Справочник для всей семьи


Поделитесь с Вашими друзьями:
1   ...   8   9   10   11   12   13   14   15   ...   37


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

    Главная страница