Оглы магистерская диссертация на тему: анализ состояния качества и безопасности пищевой продукции


ГЛАВА 3. ОБЕСПЕЧЕНИЕ БЕЗОПАСНОСТИ ПРОДУКТОВ ПИТАНИЯ



Скачать 284.09 Kb.
страница3/6
Дата01.05.2016
Размер284.09 Kb.
ТипРеферат
1   2   3   4   5   6
ГЛАВА 3. ОБЕСПЕЧЕНИЕ БЕЗОПАСНОСТИ ПРОДУКТОВ ПИТАНИЯ

Проблема безопасности продуктов питания в настоящее время носит глобальный характер. Интенсификация сельскохозяйственного производства, увеличение количества автотранспорта, ухудшение экологической обстановки, Чернобыльская катастрофа приводят к увеличению контаминации в продуктов питания чужеродными и вредными для организма человека химическими соединениями. Наличие в пищевых продуктах загрязняющих веществ, не обладающих пищевой и биологической ценностью или токсичных, угрожает здоровью человека. Естественно, что эта проблема, касающаяся как традиционных, так и новых продуктов питания, стала особенно острой в настоящее время. Понятие «чужеродное вещество» стало центром, вокруг которого до сих пор разгораются дискуссии. Всемирная организация здравоохранения и другие международные организации вот уже около 40 лет усиленно занимаются этими проблемами, а органы здравоохранения многих государств пытаются их контролировать и внедрять сертификацию пищевых продуктов.[57]

Загрязняющие вещества могут попадать в пищу случайно в виде контаминантов-загрязнителей, а иногда их вводят специально в виде пищевых добавок, когда это, якобы, связано с технологической необходимостью. В пище загрязняющие вещества могут в определенных условиях стать причиной пищевой интоксикации, которая представляет собой опасность для здоровья человека. При этом общая токсикологическая ситуация еще больше осложняется частым приемом других, не относящихся к пищевым продуктам, веществ, например, лекарств; попаданием в организм чужеродных веществ в виде побочных продуктов производственной и других видов деятельности человека через воздух, воду, потребляемые продукты и медикаменты.

В настоящее время экологические проблемы все увеличиваются. Все больше и больше людей реагируют на загазованность городов выхлопными газами автомобилей – увеличивается количество населения с аллергическими заболеваниями, расстройством верхних дыхательных путей, желудочно-кишечного тракта. Накопление загрязняющих веществ в печени приводит к эпидемии гепатита. Увеличивается число больных раковыми заболеваниями, вызванными воздействием вредных факторов окружающей среды.

Химические вещества, которые попадают в продукты питания из окружающей нас среды, создают проблемы, решение которых является насущной необходимостью. В результате этого нужно оценить биологическое значение угрозы этих веществ здоровью человека и раскрыть ее связь с патологическими явлениями в организме человека. Значение проблемы безопасности продуктов питания постоянно возрастает, так как именно обеспечение безопасности продовольственного сырья и продуктов питания является одним из основных факторов, определяющих здоровье людей и сохранение генофонда.

Под безопасностью продуктов питания понимают отсутствие опасности для здоровья человека при их употреблении, как с точки зрения острого негативного воздействия (пищевые отравления и пищевые инфекции), так и с точки зрения опасности отдаленных последствий (канцерогенное, мутагенное и тератогенное действие), т.е. безопасными можно считать продукты питания, не оказывающие вредного, неблагоприятного воздействия на здоровье настоящего и будущего поколений. [41]

В условиях возрастающего загрязнения продуктов питания чужеродными веществами на первый план необходимо выносить вопросы правильного питания, чтобы в организм человека поступали все необходимые компоненты для нормального его функционирования. Ведь в здоровом организме многие загрязняющие вещества не вызывают нарушений биохимических процессов. Для нейтрализации воздействия загрязняющих веществ на организм человека необходимо разрабатывать специальные диеты с учетом вида основных загрязнений.

Таким образом, для населения необходимо разрабатывать рецептуры пищевых продуктов и рационов с учетом загрязненности того или иного города, а также с целью нейтрализации загрязняющих веществ, применяемых для увеличения сроков хранения продуктов питания. Только в этом случае возможно в какой-то мере компенсировать вредное воздействие окружающей среды на организм.

В литературе встречаются различные виды классификаций загрязняющих веществ пищевых продуктов. В законе о пищевых продуктах в ГДР еще в 1962 г. были определены следующие понятия.

Чужеродными веществами называют такие вещества, которые по своим свойствам и количеству, а также по своей природе или вследствие способов физической обработки продуктов не свойственны этим продуктам, но употребляются вместе с ними в качестве их составной части во время еды, питья, в процессе курения или нюхания.

Загрязняющими соединениями называют вещества, оказывающие токсикологическое или биологическое воздействие на организм человека.

Чужеродные вещества, по данным Л. Росивал, Р. Энгст и А. Соколой, классифицируют на специально добавленные и случайно содержащиеся в продуктах питания.

Многолетние исследования показали, что загрязнение продуктов питания и продовольственного сырья происходит под влиянием следующих факторов. [41]


  1. Использование неразрешенных красителей, консервантов, антиокислителей или их применение в повышенных дозах.

  2. Применение новых нетрадиционных технологий продуктов питания или отдельных веществ, в том числе полученных путем химического и микробиологического синтеза.

  3. Загрязнение сельскохозяйственных структур и продуктов животноводства пестицидами, используемыми для борьбы с вредителями растений и в ветеринарной практике для профилактики заболеваний животных (используют около 600 препаратов на основе 300 действующих веществ).

  4. Нарушение гигиенических правил использования в растениеводстве удобрений, оросительных вод, различных отходов промышленности, коммунальных, сточных и других вод, осадков очистительных сооружений.

  5. Использование в животноводстве и птицеводстве неразрешенных кормовых добавок, консервантов, стимуляторов роста.

  6. Миграция в продукты питания токсичных веществ из пищевого оборудования, посуды, инвентаря, тары, упаковок вследствие использования неразрешенных полимерных, резиновых и металлических материалов.

  7. Образование в пищевых продуктах эндогенных, токсичных соединений в процессе теплового воздействия, кипячения и других способов технологической обработки.

  8. Несоблюдение санитарных требований в технологии производства и хранения пищевых продуктов, что приводит к образованию бактериальных токсинов (микотоксинов, батулотоксинов и др.).

  9. Поступление в продукты питания токсичных веществ, в том числе радионуклидов из окружающей среды, атмосферного воздуха, почвы, водоемов.

С точки зрения токсичности и распространенности наибольшую опасность имеют следующие контаминанты.

Токсины микроорганизмов – наиболее опасные природные загрязнители, распространены в растительном сырье. например, в импортном арахисе обнаруживаются афлотоксины до 26 % от объема исследуемого продукта, кукурузе – 2,8 %, ячмене – до 6 %. Патулин выявляется в продуктах переработки фруктов – соке, джеме, пюре, что связано с нарушением технологий и использованием нестандартного сырья.

Токсичные элементы (тяжелые металлы). Для них основные источники загрязнения – угольная, металлургическая, химическая промышленность.

Антибиотики, их остаточные количества обнаруживаются в 15–25 % продукции животноводства и птицеводства. Проблема усугубляется тем, что методы контроля и нормативы разработаны только для нескольких из множества применяемых антибиотиков.

Пестициды могут накапливаться в продовольственном сырье и пищевых продуктах вследствие бесконтрольного использования средств защиты растений.

Нитраты, нитриты, нитрозоамины. Проблема связана с нерациональным использованием удобрений, что приводит к накоплению контаминантов, усилению процесса нитрозирования и образованию высокотоксичных соединений – нитрозоаминов. В настоящее время нитрозоамины встречаются практически во всех мясных, рыбных и других продуктах, при этом до 36 % мясных и 51 % рыбных продуктов содержат их в концентрациях, превышающих гигиенические нормативы.

Диоксины и диоксиноподобные соединения, среди которых особо опасными являются хлорорганические – их источником служат хлорные производства.

Полициклические ароматические углеводороды, образуются в результате природных и техногенных процессов.

Радионуклиды – природные и искусственные источники.

Пищевые добавки – подсластители, ароматизаторы, красители, антиоксиданты, стабилизаторы.

Некоторые группы токсичных соединений, подлежащие контролю в отдельных ПП и ПС, приведены в табл. 6.

Таблица 6.

Загрязнители, подлежащие контролю в различных группах ПП и ПС


Группы ПП и ПС

Загрязнители

Зерно и зернопродукты

Пестициды, микотоксины (афлотоксины)

Мясо и мясопродукты



Токсичные элементы, нитриты, антибиоти-ки, нитрозоамины, гормональные препара-ты, полихлорированные дибензодиоксины и дибензофураны

Овощи, фрукты, продукты их переработки, картофель

Пестициды, нитраты, патулин


Молоко


и молокопродукты

Пестициды, антибиотики, токсичные элементы, афлотоксин, полихлорированные дибензодиоксины и дибензофураны



3.1. Загрязнение пищевых продуктов токсичными веществами

Химические элементы в виде ионов, минеральных солей, комплексных соединений с неорганическими и органическими веществами входят в состав живой материи и являются незаменимыми нутриентами. В виде ионов минеральные вещества участвуют в передаче нервных импульсов, обеспечивают ряд физиологических процессов организма, входят в состав органических соединений (например, гемоглобин), являются материалом для построения тканей организма и т. д. [8]

Минеральные вещества в ПП и организме человека в зависимости от количества подразделяют на микро- и макрокомпоненты. Если массовая доля компонента менее 10-2 %, его считают микрокомпонентом. Металлы относят к минеральным веществам, необходимым организму нутриентам. Роль металлов двойственна: с одной стороны, они необходимы для нормального протекания физиологических процессов, с другой – токсичны при высоких биодоступных концентрациях. Согласно ВОЗ содержание 8 химических элементов контролируют при международной торговле продуктами питания: Fe, Cu, Hg, Cd, Pb, As, Sr, Zn.

Количественное определение токсичных элементов связано с рядом трудностей, обусловленных низкими значениями их ПДК в ПП, что требует применения высокочувствительных физико-химических методов анализа. Кроме того, сложная органическая матрица, летучесть отдельных элементов, обуславливают особую осторожность в пробоподготовке.



Свинец – один из самых распространенных и опасных токсикантов. В атмосферу ежегодно поступает 4,5-105т свинца. ПДК свинца в водопроводной воде составляет 0,03 мг/кг. Значительно выше эта характеристика в атмосферном воздухе – 1,5 мкг/м3. Общее содержание свинца в организме человека – 120 мг. ДСД – 0,007 мг/кг массы тела. В ПП содержание свинца колеблется в довольно широких пределах (табл. 7).

Активное накопление свинца отмечается в мясе сельскохозяйственных животных вблизи промышленных центров, крупных магистралей. В организме взрослого человека усваивается в среднем 10 % поступившего свинца, у детей – 30–40 %. 90 % свинца выводится с физиологическими жидкостями, биологический период полувыведения составляет 20 дней, из костей до 20 лет.

Механизм токсического действия свинца определяется по двум основным направлениям:

1) блокада функциональных сульфгидрильных групп белков, что приводит к ингибированию многих жизненно важных ферментов;

2) проникновение свинца в нервные и мышечные клетки, образование лактата свинца путем взаимодействия с молочной кислотой, затем образование фосфата свинца, который создает барьер для проникновения в нервные и мышечные клетки ионов кальция, и как результат – развитие паралича. Таким образом, основными мишенями при воздействии свинца являются кроветворная, нервная, пищевая системы и почки. Отмечено его влияние на половую функцию организма.

Табл. 7. Содержание свинца в некоторых продуктах питания


Продукт


Содержание Pb, мг/кг



Фрукты

0,01–0,6

Овощи

0,02–1,6

Крупы

0,03–3

Мясо и рыба

0,0–0,78

Молоко

0,01–0,1

Мероприятия по профилактике загрязнения свинцом ПП включают ведомственный и государственный контроль за выбросами, контроль за использованием луженой, глазурованной, керамической пищевой посуды.

Контроль за содержанием свинца осуществляют фотометрическим дитизоновым, атомно-абсорбционным и полярографическим методами.

Кадмий широко используется в различных отраслях промышленности в качестве компонента защитных гальванических покрытий, в производстве пластмасс, полупроводников, в производстве аккумуляторов. Его соли входят в состав некоторых фосфатных удобрений и применяются в ветеринарии как антигельминтные и антисептические препараты.

Кадмий является наиболее опасным загрязнителем ПП. 80 % этого элемента поступает в организм человека с пищей, 20 % – через легкие из атмосферы, при курении. В одной сигарете содержится 1,5–2 мкг кадмия и его уровень в крови и почках курящего в 1,5–2 раза выше. С рационом взрослый человек в сутки может получать 150 и выше мкг кадмия, но в суточном наборе продуктов содержание этого токсичного элемента не должно превышать 30–35 мкг. ДСП – 70 мкг/сутки. ПДК в питьевой воде – 0,01 мг/л. 92–94 % кадмия выводится из организма (в сутки 0,1 % – велико время удерживания). Этот элемент образует комплекс с низкомолекулярным белком металлотионеином. В таком виде металл не токсичен. Здоровый организм взрослого человека содержит 50 мг кадмия, в организме новорожденного он отсутствует и накапливается только к 10 мес. Как и свинец, кадмий не является необходимым организму нутриентом.

Содержание кадмия в ПП представлено в табл. 8.

Таблица 8

Содержание кадмия в отдельных продуктах питания


Продукт

Содержание Сd, мкг/кг

Зерновые

28–95

Горох

15–19

Картофель

12–50

Капуста

2–26

Фрукты

9–42

Растительное масло

10–50

Молоко

2,4 (в среднем)

Яйца

23–250

Грибы

100–500

Главной мишенью биологического действия кадмия являются почки, вторичное проявление интоксикации – нарушение минерального состава костей. Механизм действия – блокада сульфгидрильных групп. Кадмий является антагонистом цинка, кобальта, селена, он ингибирует активность ферментов, содержащих эти элементы. Результатом являются развитие гипертонии, анемии, снижение иммунитета. Отмечены тератогенный, мутагенный, канцерогенный эффекты. Присутствие в организме Со, Se, Zn, их производных смягчают действие кадмия за счет конкурентного взаимодействия элемента с белком металлотионеином.

В профилактике интоксикации кадмием имеет значение правильное питание: преобладание в рационе растительных белков, богатое содержание серосодержащих аминокислот, аскорбиновой кислоты, элементов цинка, железа, меди, кальция.

При пробоподготовке и определении кадмия необходимо учитывать его способность испаряться при t = 500 °C. Поэтому минерализацию проводят в серной кислоте с добавкой пероксида водорода.

Основными методами определения кадмия являются атомно-абсорбционный и полярографический .

Олово. Его необходимость для организма человека не доказана. Организм взрослого человека содержит 17 мг олова, что указывает на возможность его участия в обменных процессах. Повышенное содержание олова придает продуктам неприятный вкус. При поступлении олова с пищей усваивается ~ 1 %. Неорганические соединения олова малотоксичны, более токсичны – органические. Соединения олова находят применение в сельском хозяйстве в качестве фунгицидов, в химической промышленности как стабилизаторы поливинилхлоридных полимеров. Основной источник загрязнения – банки, фляги, тара, оборудование, которое изготовляется с применением лужения и гальванизации. Активность перехода олова в ПП возрастает с увеличением содержания органических кислот, окислителей, нитратов при температуре хранения более 20 °С.

Опасность отравления оловом усиливается при постоянном присутствии его спутника свинца. Токсичная доза олова при его однократном поступлении – 5–7 мг/кг массы тела, т. е. 300–700 мг. ПДК составляет 200 мг/кг. Действенной мерой предупреждения загрязнения пищи оловом является покрытие поверхности тары и оборудования гигиенически безопасным лаком или полимерным материалом.

Для текущих анализов на олово используют фотометрический метод с кверцетином, арбитражным является атомно-абсорбционный.

Цинк. Является необходимым элементом и как кофактор входит в состав около 80 ферментов, участвующих в важнейших биологических и ферментативных процессах. Например, процессы в поджелудочной железе, где цинк стабилизирует молекулы инсулина или участвует в процессах переноса СО2 кровью и высвобождении его в легких. Обычными симптомами недостаточности цинка являются замедление роста, нарушение вкуса (гипо-гезия), обоняния (гипосмия).

В организме взрослого человека содержится 1,4–2,3 г цинка. Суточная потребность в цинке составляет 5 мг, при беременности и лактации – 20–25 мг. Цинк, содержащийся в растительных продуктах, менее доступен для организма, усваивается ~10 %, так как фитин растений и овощей связывает элемент. Из продуктов животного происхождения цинк усваивается ~ на 40%.

В табл. 9 представлены данные по содержанию цинка в ПП.

Таблица 9

Содержание цинка в некоторых пищевых продуктах


Продукт

Содержание Zn, мг/кг

Мясо

20–40

Рыба

15–30

Картофель, морковь

10

Молоко

2–6

Устрицы

60–1000

Интоксикация возможна при нарушении использования пестицидов, небрежного применения терапевтических препаратов. Известны случаи отравления напитками, хранившимися в оцинкованной железной посуде. Исследователями отмечен антагонизм цинка и меди. Повышенный прием цинка влияет на медный баланс, что отражается на показателях холестерина в плазме крови, а также на активности ферментов, содержащих медь. Такие продукты могут содержать 200–600 мг/кг и более цинка.

Для арбитражных анализов на цинк используют атомно-абсорбционный метод анализа, для текущих – полярографический.

Медь является необходимым для организма элементом. Входит в состав ферментов, гормонов. В организме взрослого человека содержится ~100–150 мг меди и осуществляются определенные механизмы ее биотрансформации. Суточное потребление 4–5 мг. Поступающий с продуктами элемент аккумулируется в количестве ~30 % от поглощенного. При длительном воздействии высоких доз меди наступает «поломка» механизмов адаптации, переходящая в интоксикацию и отравление. Основную опасность представляют выбросы промышленных предприятий, напитки, продукты, соприкасающиеся с медной тарой. Токсичность меди проявляется при ее потреблении 125–200 мг в день. Ион меди Cu2+ является сильным окислителем, разрушает в пищевых продуктах витамины С и А, ухудшает органолептические свойства, способствует окислению липидов.

Обычная концентрация меди в ПП – 0,4–0,5 мг/кг. В большом количестве она содержится в мясе, печени, почках, сердце, зелени. Повышенное содержание меди отмечается в бобовых культурах. Особенно много в печени животных и рыб, до 60 мг/кг.

Арбитражным методом определения меди является атомно-абсорбционный, для текущих анализов используют экстракционно-фотометрический с применением дитизона.

Железо – один из самых распространенных элементов в земной коре (четвертое место по распространенности, 5 % земной коры по массе) и необходимым для жизнедеятельности как животных, так и растительных организмов. У растений дефицит проявляется через хлороз, у человека – железодефицитную анемию. Железо является кофактором в гемсодержащих ферментах, участвует в образовании гемоглобина, эритроцитов, обеспечивает активность ряда ферментов, осуществляет перенос кислорода.

В организме взрослого человека содержится ~4,5 г Fe. Потребность взрослого человека в железе составляет 14 мг в сутки, у женщин в период беременности и лактации потребность резко возрастает. Практически все продукты содержат железо. В ПП его содержание колеблется в пределах 70–4000 мкг/100 г. В зерновых, муке, крупах определяют в среднем 40 мг Fe на 1кг продукта, молоке и кисломолочных продуктах – 45, сырах – 44, свежем мясе и колбасных изделиях – 25 мг/кг. Много железа в бобовых растениях, в печени, почках – 250–400 мг/кг. Дополнительное количество железа поступает с водопроводной водой, где содержание железа зависит от источника, состояния системы водоснабжения.

Железо из мясных продуктов усваивается примерно на 30 %, растительных – на 10 %. Растительные продукты содержат фосфаты и фитин, которые образуют с железом труднорастворимые соли и препятствуют усвояемости. Чай понижает усвояемость железа в результате связывания его с дубильными веществами в трудно растворимый комплекс. Усвоению железа способствует витамин В12, аскорбиновая кислота. Несмотря на активное участие в различных обменных процессах, элемент может оказывать и токсичное воздействие.

Для проведения текущих анализов используют фотометрический метод определения железа, арбитражных – атомно-абсорбционный.



Ртуть – один из самых опасных и токсичных элементов, способный накапливаться в организме человека, животных, растениях. Благодаря растворимости, летучести ртуть и ее соединения распространены в природе. В земной коре ее содержание 0,5 мг/кг, морской воде – 0,03 мкг/кг. В организме взрослого человека содержится ~13 мг ртути, но она не является нутриентом. Человек с суточным рационом получает 0,045–0,06 мг ртути. Ртуть способна накапливаться в волосах человека (30–40 мкг/г).

Загрязнение ПП может происходить в результате:



  • естественного процесса испарения из земной коры в количестве 25000–125 000 т ежегодно;

  • использования ртути и ее соединений в хозяйстве: производство хлора и щелочей, амальгамная металлургия, медицина и стоматология (например, использование каломели Hg2Cl2 в качестве антисептика, раствора сулемы HgCl2 для дезинфекции, ртутной серной мази при кожных заболеваниях), фунгицидов (алкилированные соединения ртути) для протравливания семян.

Миграция и распределение ртути в окружающей среде осуществляется в виде круговорота двух типов: 1) перенос элементной ртути от наземных источников в мировой океан; 2) циркуляция соединений ртути, образующихся в процессе жизнедеятельности бактерий.

Второй тип круговорота является более опасным, приводит к образованию метил-, диметил- и других высокотоксичных соединений, поступающих в пищевые цепи. Метилирование ртути осуществляется аэробными и анаэробными микробами, микромицетами, которые обитают в почве, донных отложениях.

Предполагается, что метилирование осуществляется в определенных условиях в кишечнике человека и животных. Наиболее токсичны алкилртутные соединения с короткой цепью. Период полувыведения из организма неорганических соединений – 40 суток, органических – 76.

Соединения ртути по-разному всасываются, метаболизируются и выводятся из организма человека. Наиболее токсичны алкилртутные соединения CH3Hg+, C2H5Hg+ и др. Механизм токсичного действия – взаимодействие с сульфгидрильными группами; блокируя их, ртуть изменяет свойства, инактивирует ряд ферментов. Неорганические соединения ртути нарушают обмен элементов кальция, меди, цинка и др., органические – белков, цистеина, токоферола и т. д. Защитным эффектом обладают соединения селена и цинка. Предполагается, что защитное действие, например, селена связано с образованием нетоксичного селенортутного соединения.

Фоновое содержание ртути в сельскохозяйственных растениях составляет от 2 до 20 мкг/кг. Высокая концентрация ртути обнаружена в грибах (табл. 10), где может синтезироваться метилртуть.

Таблица 10. Содержание ртути в различных продуктах



Продукт

Содержание Hg, мкг/кг

Зерновые

10–103

Фрукты

1–124

Грибы:

шляпочные

перезрелые

6–450


До 2000

Мясо

6–20

Почки

До 70

Рыба:

хищная пресноводная

нехищная пресноводная

океанская


107–509


79–200

300–600

Наибольшей концентрацией ртути отличается мясо рыбы, поскольку ртуть активно аккумулируется из воды. Организм рыб способен накапливать элемент в печени, где синтезируется метилртуть. У некоторых видов рыб в мышцах содержится белок металлотионеин, с которым ртуть и другие металлы образуют комплексные соединения, накапливаясь за счет этого. У таких рыб содержание ртути достигает 500–20 000 мкг/кг (рыба-сабля), 5000–14 000 мкг/кг (тихоокеанский марлин).

При варке рыбы, мяса концентрация ртути снижается, а при обработке грибов остается постоянной. Это объясняется тем, что в грибах ртуть связана с аминогруппами соединений, в рыбе, мясе – с серу содержащими аминокислотами.

ПДК для пищевых продуктов составляет 0,005–0,70 мг/кг, ПДК в воде – 0,005 мг/кг. Из-за летучести соединений ртути возможны потери как при хранении, так и при сушке. Используют только мокрое озоление смесью серной и азотной кислот.

Арбитражным методом определения ртути является атомно-абсорбционный или метод холодного пара, текущим – экстракционно-фотометрический с дитизоном. Метод холодного пара основан на поглощении света атомами в газообразном состоянии, которые выделяются потоком воздуха из водного раствора после восстановления ионов до атомного состояния при = 253,7 нм в газовой кювете при комнатной температуре.



Каталог: application -> uploads -> 2015
application -> Исследовательская работа с. Горнозаводск
application -> Конкурсе 125 «Мой любимый учитель»
application -> Исследовательская работа по биологии
application -> Конспект нод в старшей группе «Грибные загадки»
application -> Тезисы. Определение содержания железа в воде из разных источников
application -> Исследовательская работа «Проблема йододефицита и его профилактика» Выполнили:
application -> Викторина по биологии «Особенности строения живых организмов» Имя, фамилия: Оглоблина Наталия
application -> Роль здоровьесберегающего урока в стрессоустойчивости младшего школьника Цель: Обеспечить школьникам возможность сохранения здоровья на весь период обучения в школе
2015 -> «развитие конкурентной стратегии предприятия на основе маркетинга»
uploads -> Международный опыт правового регулирования сферы здравоохранения


Поделитесь с Вашими друзьями:
1   2   3   4   5   6


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

    Главная страница