Учебно-методическое пособие для студентов первого курса бакалавриата, обучающихся по заочной форме по направлению 38. 03. 01



страница3/6
Дата01.05.2016
Размер0.56 Mb.
ТипУчебно-методическое пособие
1   2   3   4   5   6

Тема 3. Векторные пространства



Векторы на плоскости и в пространстве (геометрические векторы). Линейные операции над векторами. Коллинеарные и компланарные векторы. Координаты и длина вектора. Скалярное произведение двух векторов (определение) и его выражение в координатной форме. Угол между векторами. n-мерный вектор. Линейная комбинация, линейная зависимость и независимость векторов. Векторное (линейное) пространство; его размерность и базис. Разложение вектора по базису. Скалярное произведение векторов в n-мерном пространстве. Евклидово пространство. Длина (норма) вектора. Ортогональные векторы. Ортогональный и ортонормированный базисы. ([1 или 6, § 3.1 – 3.3, 3.5 – 3.8]; [2 или 7, § 3.1 – 3.5], или [3, § 3.1–3.3, 3.5−3.8, 3.10 – 3.14], или [4, § 3.1 – 3.3, 3.6, 3.8, 3.10, 3.11, 3.13, 3.15–3.20]).

В школьном курсе математики рассматривалось понятие вектора как направленного отрезка, т.е. множества точек, заключенных между двумя точками прямой с указанным направлением. Там же определялись операции над векторами (сложение, вычитание, умножение вектора на число), вводились координаты и понятие длины вектора.

Множества всех плоских и пространственных векторов, для которых определены операции сложения и умножения, а также умножения вектора на число, являются простейшими примерами векторных (линейных) пространств. В данной теме обобщается понятие вектора и дается определение векторного пространства, являющегося основным объектом линейной алгебры.

Следует отметить, что понятие линейной комбинации, линейной зависимости и независимости векторов вводится точно так же, как это было сделано в теме 1 для строк (столбцов) матрицы. Обращаем внимание на то, что векторы линейно зависимы тогда и только тогда, когда один из векторов можно представить в виде линейной комбинации остальных векторов. А если среди векторов есть нулевой вектор, то такие векторы всегда линейно зависимы.

Нужно четко знать понятие базиса n-мерного пространства, представляющего совокупность его n линейно независимых векторов. При этом любой вектор линейного пространства может быть представлен единственным способом в виде линейной комбинации векторов базиса.

Надо уяснить, что, например, три пространственных (два плоских) вектора могут образовать базис, если они некомпланарны (неколлинеарны). Если же они компланарны, т.е. лежат в одной плоскости (коллинеарны, т.е. лежат на одной прямой), то любая их линейная комбинация представляет вектор, лежащий в той же плоскости (на той же прямой), следовательно, по таким векторам не может быть разложен другой вектор, не лежащий в той же плоскости (на той же прямой), а это значит, что компланарные (коллинеарные) векторы базис трехмерного (двумерного) пространства не образуют.

Векторное пространство, как отмечено выше, представляет множество векторов, в которых определены операции сложения векторов и умножения вектора на число, но не определен способ измерения длин векторов и углов между ними. Это становится возможным с введением скалярного произведения векторов и непосредственно связанного с ним понятия евклидова пространства.

Скалярное произведение двух векторов надо знать в двух формах (как произведение длин двух векторов на косинус угла между ними и как сумма произведений соответствующих координат (компонент) этих векторов). Обратите внимание на приведенные с решениями задачи [1, или 6, или 3, примеры 3.1– 3.3].

В конце темы вводятся понятия ортогональных векторов. Это позволяет в евклидовом пространстве выделить среди всех базисов ортогональные и ортонормированные базисы, которые более удобны и играют в линейной алгебре роль, аналогичную прямоугольной (декартовой) системе координат в аналитической геометрии (см. тему 6).
Тема 4. Линейные операторы

Понятие линейного оператора. Образ и прообраз векторов. Матрица линейного оператора в заданном базисе. Ранг оператора. Операции над линейными операторами. Нулевой и тождественный операторы. Собственные векторы и собственные значения линейного оператора (матрицы). Характеристический многочлен матрицы. Диагональный вид матрицы линейного оператора в базисе, состоящем из его собственных векторов. ([1 или 6, § 3.6, 3.7]; [2 или 7, § 3.3, 3.4], или [3, § 3.6, 3.7, 3.12,3.13], или [4, § 3.8, 3.10, 3.18, 3.19]).

.

В этой теме рассматривается одно из базовых понятий линейной алгебры – понятие линейного оператора (преобразования, отображения), представляющего закон (правило), по которому каждому вектору х n-мерного пространства ставится в соответствие один вектор y m-мерного пространства . При оператор обращает в себя.



Линейность оператора определяется выполнением свойств аддитивности и однородности оператора [1, или 6, или 3, § 3.6]. Нужно знать, что каждому линейному оператору соответствует матрица А в некотором базисе . Верно и обратное утверждение . С помощью этой матрицы для любого вектора х можно найти его образ – вектор y.

Особую роль в приложениях линейной алгебры играют векторы, которые под воздействием линейного оператора преобразуются в новые векторы, коллинеарные исходным. Такие векторы получили название собственных векторов оператора (матрицы А), а соответствующие им числа – собственных значений оператора (матрицы А). Точные определения и нахождение собственных векторов и значений приведены в [1, или 6, или 3, пример 3.7].

Если базис линейного оператора составить из собственных векторов, то матрица оператора имеет наиболее простой вид и представляет собой диагональную матрицу, а соответствующая операция называется приведением данной матрицы к диагональному виду ([1, или 6, или 3, пример 3.8]).
Тема 5. Квадратичные формы

Квадратичная форма (определение). Матрица квадратичной формы. Матричная форма записи квадратичной формы.. Канонический вид и ранг квадратичной формы. Закон инерции квадратичных форм. Положительно и отрицательно определенная, знакоопределенная квадратичные формы. Критерий определенности квадратичной формы через собственные значения ее матрицы. Критерий Сильвестра. ([1 или 6, § 3.8]; [2 или 7,

§ 3.5], или [3, § 3.8, 3.14], или [4, § 3.11, 3.13, 3.20]).

Квадратичные формы достаточно часто возникают при решении прикладных задач. Если в n-мерном линейном пространстве выбрать некоторый базис, то квадратичную форму можно рассматривать как некоторую функцию векторного аргумента .

Необходимо знать определение и матричную запись квадратичной формы, ее канонический вид. Уметь приводить в простых случаях квадратичную форму к каноническому виду, имея в виду, что это возможно сделать многими способами, но ранг квадратичной формы при этом не меняется.

Студент должен владеть двумя способами исследования на знакоопределенность квадратичной формы (с помощью собственных значений ее матрицы и критерия Сильвестра). Например, очевидно, что квадратичная форма (т.е. ) является знакоположительной. В этом можно убедиться с помощью отмеченных критериев, ибо матрица квадратичной формы , как нетрудно показать, имеет положительные собственные значения , , а угловые (главные) миноры , также положительные. А квадратичная форма не является знакоопределенной, так как ее матрица имеет разные по знаку собственные значения и , а угловые миноры , чередуются по знаку, начиная с положительного значения (при , квадратичная форма была бы знакоотрицательной) – (см. [1 или 6, примеры 3.11, 3.12], или [3, примеры 3.11, 3.12, 3.109, 3.110]).

Раздел II. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ
Тема 6. Элементы аналитической геометрии

Уравнение линии на плоскости. Уравнение прямой с угловым коэффициентом и начальной ординатой. Общее уравнение прямой и его исследование. Построение прямой по ее уравнению. Уравнение прямой, проходящей: а) через данную точку в данном направлении; б) через две данные точки. Координаты точки пересечения двух прямых. Условие параллельности и перпендикулярности прямых. Кривые второго порядка, их общее уравнение. Нормальное уравнение окружности. Канонические уравнения эллипса, гиперболы, параболы. Уравнение плоскости в пространстве и его частные случаи. Условие параллельности и перпендикулярности плоскостей. Уравнение прямой как пересечение двух плоскостей. Канонические уравнения прямой в пространстве. Углы между плоскостями, прямыми, прямой и плоскостью. ([1 или 6, § 4.1 – 4.7]; [2 или 7, § 4.1 – 4.3], или [3, § 4.2 – 4.6, 4.8 – 4.10, 4.12], или [4, § 4.2 – 4.6, 4.8 , 4.12, 4.13, 4.15].

По используемым методам аналитическая геометрия существенно отличается от элементарной геометрии. Применение основного метода аналитической геометрии – метода координат позволяет значительно продвинуть вперед изучение геометрических образов, исследовать линии и поверхности, важные для практических приложений.

Важнейшим понятием аналитической геометрии является уравнение линии на плоскости, которому удовлетворяют координаты каждой точки данной линии и не удовлетворяют координаты любой точки, не лежащей на этой линии. Из этого определения следует два важных для практики положения.

1. Если задано уравнение линии, то можно установить, принадлежит ли ей какая-либо точка плоскости. Для этого достаточно подставить координаты точки в уравнение линии вместо переменных x и y. Если окажется, что они удовлетворяют уравнению, то точка принадлежит линии, в противном случае – не принадлежит.

2. Координаты точки пересечения двух линий, заданных своими уравнениями, удовлетворяют обоим уравнениям. Поэтому для нахождения координат точки пересечения двух линий нужно решить систему, составленную из их уравнений.

Следует отметить, что решение задач в аналитической геометрии проводится алгебраическим путем и никакие ссылки не чертеж не могут служить обоснованием решения задачи. Чертежи и геометрические построения служат вспомогательным средством, облегчающим решение задачи, делающим его наглядным, помогающим наметить план решения задачи. Поэтому рекомендуется сопровождать решение чертежами.

Из всех линий прямая линия имеет особое значение. Она (и ее обобщение в n-мерном пространстве) является графиком линейной функции, используемой в наиболее часто встречающихся на практике линейных экономико-математических моделях, которые будут изучаться в курсах «Методы оптимальных решений», «Исследование операций».

Студент должен знать уравнения прямой с угловым коэффициентом и начальной ординатой и его частные случаи; уравнение прямой, проходящей через данную точку в заданном направлении и через две данные точки, общее уравнение прямой [1, или 6, или 3, § 4.1]. Обратите внимание на условия параллельности и перпендикулярности прямых; на нахождение уравнения прямых; параллельной и перпендикулярной данной прямой [1, или 6, или 3, пример 4.5].

Изучая кривые второго порядка, следует иметь в виду, что любая из этих кривых выражается уравнением второй степени

(*)

которое определяет окружность, эллипс, гиперболу или параболу в зависимости от соотношений между его коэффициентами. В то же время не каждое уравнение (*) (при условии А2+В2+С2≠0) определяет кривую второго порядка (например, уравнение х2+y2+1=0 не определяет никакой линии, уравнение х2+y2=0 определяет единственную точку (0;0),, уравнение х2y2=0 задает две пересекающиеся в начале координат прямые хy=0 и х+y=0 и т.п.

Студенту надо знать нормальное уравнение окружности, канонические уравнения эллипса, гиперболы и параболы, геометрический смысл их параметров. Уметь приводить уравнение кривой второго порядка к каноническому виду, используя операцию «выделения полного квадрата» ( см. [1, или 6, или 3, примеры 4.7, 4.8]), а также находить точки пересечения различных линий (например, кривой второго порядка и прямой).

Обобщением уравнения прямой на плоскости является уравнение плоскости в пространстве (обобщением которого, в свою очередь, является уравнение гиперплоскости в n-мерном пространстве, рассматриваемое в прикладных математических курсах). Надо знать смысл его коэффициентов А, В, С (как координат нормального вектора плоскости) и частные случаи уравнения плоскости. Например, уравнение плоскости: проходящей через начало координат, (); параллельной оси Оу, (); проходящей через ось Оу, (); параллельной плоскости Oxz, (); совпадающей с плоскостью Oxz, , т.е. , () и т.д.

Уравнение прямой в пространстве рассматривается в двух формах – как линии пересечения двух плоскостей и в виде канонических уравнений.

Обращаем внимание на то, что направление плоскости и прямой определяются соответственно нормальным и направляющим векторами, поэтому углы между двумя плоскостями, двумя прямыми, прямой и плоскостью сводятся к определению углов (дополнительных углов) между этими векторами. Отсюда вытекают условия параллельности и перпендикулярности двух плоскостей, прямых, прямой и плоскости.

Основные типы задач на прямую и плоскость в пространстве представлены задачами с решениями [1 или 6, примеры 4.87 – 4.92] или [3, примеры 4.108 – 4.113]. Решение отдельных задач предполагает знание скалярного произведения двух векторов (но не требует знания векторного и смешанного произведения векторов, не входящими в программу).

Часть 2.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ
Раздел IIl. ВВЕДЕНИЕ В АНАЛИЗ
Тема 7. Функции
Понятие о множествах. Действительные числа и числовые множества. Постоянные и переменные величины. Функции и способы их задания. Область определения функции. Четные, нечетные, монотонные и ограниченные функции. Сложная функция. Понятие элементарной функции. Основные элементарные функции и их графики. Неявные функции. ([1 или 6, § 5.1 – 5.5, 5.7]; [2 или 7, гл. 5], или [3, §5.1 – 5.5, 5.7], или [5, §1.1 – 1.5, 1.7]).

Прежде всего полезно ознакомиться с некоторыми логическими символами и кванторами, чтобы использовать их в дальнейшем для сокращения записей ([1, или 6, или 3, § 5.1, 6.1]).

Изучение темы следует начать с основных понятий теории множеств ([1 или 6, или 3, § 5.1]). Далее нужно четко усвоить важнейшее понятие математического анализа – функции, уметь находить область ее определения, знать способы задания функции: аналитический, графический, табличный, словесный.

В нашем курсе рассматриваются в основном элементарные функции. Студент должен уяснить определение элементарной функции ([1, или 6, или 3, § 5.5]), четко знать свойства и строить графики следующих основных элементарных функций: y = C (постоянная), y = xn (степенная),



y = ax (показательная), y = logax (логарифмическая). Необходимо усвоить понятие сложной функции (функции от функции).

Построение графика четной (нечетной) функции можно значительно упростить, если учесть, что графики четных функций симметричны относительно оси Оy, а нечетных – относительно начала координат. Одним из характерных свойств функции является монотонность (т.е. ее возрастание или убывание на каком-либо промежутке).

Тема завершается рассмотрением линейной функции и элементов аналитической геометрии на плоскости – простейших уравнений прямой. Этот материал будет использоваться на III курсе при изучении дисциплин «Методы оптимальных решений», «Исследование операций».

Основополагающее значение здесь имеет определение уравнения линии на плоскости как уравнения с двумя переменными x и y, которому удовлетворяют координаты каждой точки этой линии и не удовлетворяют координаты любой точки, не лежащей на ней. Из этого определения следуют два важных для практики положения.



  1. Если задано уравнение линии, то можно установить, принадлежит ли ей какая-либо точка плоскости. Для этого достаточно подставить координаты точки в уравнение линии вместо переменных x и y. Если окажется, что они удовлетворяют уравнению, то точка принадлежит линии, в противном случае – не принадлежит.

  2. Координаты точки пересечения двух линий, заданных своими уравнениями, удовлетворяют обоим уравнениям. Поэтому для нахождения координат точки пересечения двух линий нужно решить систему, составленную из их уравнений.

Студент должен знать простейшие виды уравнений прямой и уметь пользоваться ими при решении задач. Соответствующий учебный материал приведен в учебнике ([1, или 6,или 3, § 4.2]).

Обратите особое внимание на нахождение уравнений прямых, параллельной и перпендикулярной данной прямой ([1, или 6, или 3, пример 4.5].


Тема 8. Пределы и непрерывность



Предел числовой последовательности. Предел функции в бесконечности и точке. Бесконечно малые величины и их свойства. Бесконечно большие величины. Основные теоремы о пределах: теорема единственности, предел суммы, произведения, частного. Признаки существования предела. Второй замечательный предел. Число e. Понятие о натуральных логарифмах. Непрерывность функции в точке и на промежутке. Основные теоремы о непрерывных функциях. Раскрытие неопределенностей вида , , , , . Вычисление пределов ([1 или 6, § 6.1 – 6.8]; [2 или 7, § 6.1 – 6.3, 6.5], или [3, § 6.1 – 6.10], или [5, §2.1 – 2.10]).

Наряду с понятием функции, понятия предела и непрерывности являются основными в разделе «Введение в анализ».

Понятие предела в учебнике [1, или 6, или 3] рассматривается для числовой последовательности и для функции: в бесконечности и в точке . Для выяснения смысла этих понятий необходимо использовать их геометрическую интерпретацию. Весьма важными являются понятия бесконечно малых и бесконечно больших величин ([1, или 6, или 3, § 6.3, 6.4]), суть которых сводится к тому, что при своем изменении бесконечно малая (по абсолютной величине) будет меньше любого, как угодно малого числа > 0, а бесконечно большая будет больше любого как угодно большого числа М > 0.

Нужно знать взаимосвязь бесконечно малых и бесконечно больших величин, свойства бесконечно малых, с помощью которых доказываются теоремы о пределах. Следует обратить внимание на признаки существования пределов, особенно на теорему 1 ([1 или 6, или 3, § 6.5]), часто позволяющую установить наличие предела значительно проще, чем при использовании его определения.

Необходимо (без вывода) знать второй замечательный предел в двух формах записи:

и .

Понятие непрерывности функции (в точке, на промежутке) является более простым, чем предел, так как оно выражается непрерывностью графика при прохождении данной точки, данного промежутка (без отрыва карандаша от листа бумаги). Наряду с интуитивным представлением надо знать определение непрерывности функции в точке и на промежутке, свойства непрерывных функций, а также то, что всякая элементарная функция непрерывна в каждой точке области определения и может иметь разрыв лишь на границах области определения.



Раздел IV. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ
Тема 9. Производная
Задачи (о касательной к плоской кривой и о мгновенной скорости), приводящие к понятию производной. Производная, ее геометрический, механический и экономический смысл. Уравнение касательной к плоской кривой. Дифференцируемость функции. Связь между дифференцируемостью и непрерывностью функции (необходимый признак дифференцируемости). Основные правила и основные формулы дифференцирования. Формулы производных основных элементарных функций. Производная сложной функции. Техника дифференцирования. Производные высших порядков ([1 или 6, § 7.1 – 7.7]; [2 или 7, § 7.1 – 7.3], или [3, § 7.1 – 7.7, 7.11, 7.12], или [5, §3.1 – 3.7, 3.11, 3.12]).).

Студенты должны знать две классические задачи, которые приводят к понятию производной: задачу о касательной к плоской кривой и задачу о скорости неравномерного прямолинейного движения. Их решение выявляет геометрический и механический смысл производной. Нужно четко знать определение производной, представлять ее экономический смысл ([1или 6, § 7.6] или [3, § 7.10]), уметь составить уравнение касательной к графику любой функции y = f (x) в заданной точке.

Изучая материал этой темы, студенты знакомятся с необходимым условием дифференцируемости функции. Необходимо четко уяснить, что из дифференцируемости функции в некоторой точке следует ее непрерывность в этой точке. Обратная теорема не справедлива, так как существуют непрерывные функции, которые в некоторых точках могут не иметь производной ([1 или 6, § 7.2] или [3, § 7.2]).

Нужно, чтобы студенты, хорошо усвоив основные правила дифференцирования, умели находить производную суммы и произведения нескольких дифференцируемых функций, производную частного двух функций, пользоваться основными формулами дифференцирования, а также могли их вывести. Таблица основных формул приведена в учебнике ([1 или 6, или 3, § 7.5]) и на переднем форзаце. Наиболее важным для овладения техникой дифференцирования функций, и к тому же наиболее трудным, является правило дифференцирования сложной функции ([1, или 6, или 3, §7.4]). Знание этого правила способствует успешному освоению техники дифференцирования функций. Поэтому необходимо обратить особое внимание на примеры с решениями, в которых иллюстрируется его применение. Нужно усвоить понятия производных высших порядков и уметь их находить.




Тема 10. Приложения производной
Теорема Ролля* и Лагранжа. Правило Лопиталя (без вывода). Признаки возрастания и убывания функции. Экстремум функции. Необходимые и достаточные признаки экстремума (второй достаточный признак – без доказательства). Наибольшее и наименьшее значения функции на отрезке; их нахождение; решение задач. Исследование функции (область определения, четность и нечетность, интервалы монотонности и точки экстремума, поведение функции при и в точках разрыва, вертикальные, горизонтальные и наклонные асимптоты, точки пересечения графика с осями координат) и построение ее графика. Квадратичная функция y = ax2 + bx + c и ее график. Дробно-линейная функция y = (ax + b)/(cx + d) и ее график ([1 или 6, § 8.1 – 8.5, 8.7 – 8.9]; [2 или 7, § 8.1 – 8.3, 8.5], или [3, § 8.1 – 8.5, 8.7, 8.8, 8.10 – 8.12, 8.14], или [5, §4.1 – 4.5, 4.7, 4.8, 4.10 – 4.12, 4.14])

Одно из простейших приложений производной – раскрытие неопределенностей вида [0/0] или с помощью правила Лопиталя ([1, или 6, или 3, § 8.2]). Обратите внимание на то, что согласно формуле (8.3) предел отношения двух бесконечно малых или двух бесконечно больших функций равен пределу отношения их производных, а не пределу производной частного этих функций.

Теоремы дифференциального исчисления являются обоснованием такой важной области приложения производных, как исследование функций. Студенты должны знать формулировки этих теорем, четко различая в них условие и заключение.

В учебнике приведена схема исследования функции для нахождения ее характерных точек и особенностей, по которым можно построить ее график ([1, или 6, или 3, § 8.8]). Выполнение пункта 60 этой схемы, связанного с нахождением интервалов выпуклости функции и точек перегиба, не обязательно.



Тема 11. Дифференциал функции
Понятие дифференциала функции. Геометрический смысл дифференциала. Свойства дифференциала. Инвариантность формы дифференциала первого порядка. ([1или 6, § 9.1, 9.2]; [2 или 7, гл. 9]; [3, § 7.7 – 7.9, 7.13] или [5, §3.7 – 3.9, 3.13]).

Дифференциал функции y = f (x) – главная, линейная (относительно приращения Δx аргумента) часть приращения функции – равен произведению производной на дифференциал независимой переменной, т.е. dy= (x)dx. Геометрический смысл дифференциала рассмотрен в ([1 или 6, § 9.1] или [3, § 7.4]).

Операция нахождения дифференциала сводится к нахождению производной и также называется дифференцированием функции.

Важное свойство дифференциала первого порядка – инвариантность его формы ( или формулы). Это означает, что дифференциал функции



y = f (u) есть dy = (u)du и не зависит от того, является ли u независимой переменной или функцией. Свойство инвариантности формы дифференциала используется далее в интегральном исчислении.
Тема 12. Функции нескольких переменных
Функции двух и нескольких переменных. Частные производные и техника дифференцирования. Экстремум функции двух переменных и его необходимое условие. Понятие об эмпирических формулах и методе наименьших квадратов. Построение методом наименьших квадратов линейной функции по эмпирическим данным (вывод системы нормальных уравнений) ([1 или 6, § 15.1, 15.3, 15.6, 15.9]; [2 или 7, § 15.1 – 15.4], или [3, § 9.1, 9.3, 9.7, 9.10, 9.12 – 9.15], или [5, §5.1, 5.3, 5.7, 5.10, 5.12 – 5.15]).

Фактически мы ограничиваемся рассмотрением функции двух переменных. Для успешного усвоения этого раздела рекомендуется использовать метод аналогии с функциями одной переменной, хотя с увеличением числа переменных возникают существенные качественные отличия. Область определения функции двух переменных изображается множеством точек плоскости, а график – некоторой поверхностью в трехмерном пространстве ([1 или 6, пример 15.2] или [3, пример 9.2]).

В определении частной производной функции по одной из переменных используется понятие частного приращения, а в остальном оно сходно с определением производной функции одной переменной. Обратите внимание на способы обозначения частных производных. Техника дифференцирования функции двух (нескольких) переменных использует те же правила и приемы, которые применялись при нахождении производных функций одной переменной.

Для экстремума функции двух переменных формулируется определение и необходимое условие его существования ([1 или 6, § 15.6] или [3, § 9.7]), которые не являются достаточными.

Построение эмпирических формул методом наименьших квадратов имеет большое прикладное значение, в том числе в статистических и экономических исследованиях. Так как эмпирическая формула включает неизвестные параметры, то критерий, согласно которому она получается, является функцией этих параметров (функцией нескольких переменных). Параметры подбираются таким образом, чтобы критерий принял оптимальное (минимальное) значение. Возникает задача нахождения экстремума функции нескольких переменных – этим и объясняется рассмотрение в данном разделе метода наименьших квадратов.

Полученная методом наименьших квадратов эмпирическая формула является приближением таблично заданной функции.

Следует отметить, что погрешность построенного приближения f(x) оценивается величиной , где , а n – число табличных значений (xi, yi). Используя полученное приближение, можно найти значения функций в точках, которые отличаются от табличных и лежат внутри отрезка (x1, xn) (интерполяция) или вне его (экстраполяция).

Раздел V. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

И ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
Тема 13. Неопределенный интеграл
Понятие первообразной и неопределенного интеграла. Свойства неопределенного интеграла (с доказательством). Таблица основных интегралов. Интегрирование методом разложения, замены переменной и по частям. Понятие о «неберущихся» интегралах ([1 или 6, § 10.1 – 10.5, 10.8]; [2 или 6, § 10.1 – 10.3, 10.5], или [3, § 10.1 – 10.6, 10.9 – 10.11], или [5, §6.1 – 6.6, 6.9 – 6.11]).

Следует обратить внимание на то, что интегрирование вводится как операция, обратная дифференцированию, но в отличие от последнего приводит к неоднозначному результату: для любой непрерывной функции f (x) имеется бесконечное множество первообразных. Они отличаются друг от друга лишь на постоянное слагаемое.

Доказательства основных свойств неопределенного интеграла получены исходя из определения первообразной. Правильность интегрирования можно проверить дифференцированием; этот прием следует использовать для проверки решения соответствующих примеров в контрольной работе.

Под непосредственным интегрированием понимают нахождение неопределенного интеграла путем преобразования его к табличному с помощью основных правил интегрирования и тождественных преобразований подынтегральной функции.

Обратите внимание на свойство, связанное с линейным преобразованием аргумента ([1 или 6, формула (10.17)] или [3, формула (10.19)]), так как это простейшее из свойств, которое часто применяется при непосредственном интегрировании. Используя его, можно свести к табличным ряд интегралов.

Метод подстановки, или метод замены переменной, – один из основных приемов интегрирования функций. Следует обратить внимание на то, что можно использовать подстановки двух видов:

а) переменная интегрирования x заменяется функцией переменной t:

а

;

б) новая переменная t вводится как функция переменной интегрирования x:



.

Последнюю подстановку удобно применять, если подынтегральное выражение содержит дифференциал (производную) функции с точностью до постоянного множителя.

Если интеграл, полученный после замены переменной, стал «проще» данного (преобразован в табличный или приводящийся к табличному), то цель подстановки достигнута.

После интегрирования функции по переменной t необходимо вернуться к прежней переменной x, выразив t через x по формуле, применявшейся при подстановке.

Примеры различных подстановок даны в ([1, или 6, или 3, § 10.3, 10.6]).

Практическое применение формулы интегрирования по частям ([1 или 6, или 3, § 10.4]), если оно целесообразно, связано с проблемой правильного разбиения подынтегрального выражения на сомножители u и dv. Отметим, что формулу интегрирования по частям, как правило, удобно применять, если подынтегральная функция является произведением многочлена на показательную или логарифмическую функцию ([1 или 6, примеры 10.10 – 10.13]; [3, примеры 10.8, 10.9]).



Тема 14. Определенный интеграл
Задача о вычислении площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Формула Ньютона – Лейбница. Свойства определенного интеграла. Вычисление определенного интеграла методом замены переменной и по частям. Понятие о несобственных интегралах с бесконечными пределами интегрирования. Вычисление площадей плоских фигур. Приближенное вычисление определенного интеграла по формуле трапеций ([1 или 6, § 11.1 – 11.8, 11.10]; [2 или 7, § 11.1 – 11.4], или [3, § 11.1 – 11.8, 11.11 – 11.14], или [5, §7.1 – 7.8, 7.11 – 7.14]).

Рассматривая задачу о нахождении площади криволинейной трапеции, нужно четко представлять, что сначала выводится формула площади этой фигуры, а затем проводится ее вычисление.

Студент должен знать определение определенного интеграла как предела интегральной суммы и то, что благодаря формуле Ньютона – Лейбница ([1, или 6, или 3, формула (11.15)]) – основной формуле интегрального исчисления – удается свести вычисление этого интеграла к нахождению приращения любой первообразной для данной функции на отрезке интегрирования. Следует обратить внимание на достаточное условие интегрируемости функции на данном отрезке – непрерывность функции на этом отрезке.

Используя метод подстановки при вычислении определенного интеграла, нужно изменять пределы интегрирования после введения новой переменной и вычислять интеграл, не возвращаясь к старой переменной ([1 или 6, примеры 11.3, 11.18] или [3, примеры 11.3, 11.23]).

Применяя формулу интегрирования по частям, можно находить частное приращение первообразной uv в процессе решения, не откладывая это действие до полного отыскания первообразной ([1 или 6, или 3, пример 11.4]).

Понятие несобственного интеграла с бесконечными пределами появляется как обобщение понятия определенного интеграла для случая, когда один из пределов интегрирования или оба не ограничены, т.е. когда подынтегральная функция определена и непрерывна на одном из промежутков: или . Если при этом первообразная известна (является элементарной функцией), то сходимость несобственного интеграла устанавливается по определению. Если первообразная неизвестна (неопределенный интеграл не "берется" в элементарных функциях), то сходимость устанавливается косвенным путем с помощью признаков сходимости. Последнее выходит за рамки программы.

Применяя определенный интеграл для вычисления площадей плоских фигур, мы исходим из того интуитивного утверждения, что всякая плоская фигура, ограниченная несколькими непрерывными кривыми, образующими замкнутый контур, имеет площадь. Следует помнить, что "простейшей" фигурой, площадь которой выражается определенным интегралом, является криволинейная трапеция. Во всех остальных случаях фигуру нужно представить в виде сумм или разностей криволинейных трапеций. Решение задачи на вычисление площади криволинейной трапеции всегда начинают с построения чертежа и при этом следят за тем, чтобы граница фигуры содержала все заданные в условии линии и точки. (Уяснить сказанное можно, разобрав примеры, в которых вычисляются площади различных плоских фигур) (см. ниже, раздел «Задачи для самоподготовки»).

Формула трапеций и другие формулы для приближенного вычисления определенных интегралов используются, когда соответствующая первообразная не является элементарной функцией ("неберущийся" неопределенный интеграл) или когда интеграл представляет собой трансцендентную функцию (для составления таблиц значений таких функций).



Тема 15. Дифференциальные уравнения

Понятие о дифференциальных уравнениях. Общее и частное решения. Задача Коши. Задача о построении математической модели демографического процесса. Дифференциальные уравнения первого порядка (неполные, с разделяющимися переменными, однородные и линейные) ([1или 6, §12.1, 12.2, 12.4 – 12.6]; [2 или 7, §12.1 – 12.4], или [3, §12.1, 12.2, 12.4 – 12.6, 12.11 – 12.14], или [5, §8.1, 8.2, 8.4 – 8.6, 8.12 – 8.15]).

  1. Во многих задачах экономики, физики, экологии встречаются уравнения, связывающие искомую функцию одной или нескольких переменных с производными (или дифференциалами) различных порядков и получившие название дифференциальных уравнений. Одна из таких задач о построении простейшей математической модели демографического процесса ([1или 6, или 3, пример 12.3]) рассматривается в данной теме.

  2. Обратите внимание на то, что задача Коши – задача отыскания частного решения дифференциального уравнения первого порядка , удовлетворяющего начальному условию всегда имеет решение и притом единственное. Геометрически это означает существование единственной интегральной кривой дифференциального уравнения, проходящей через каждую точку открытого множества, в которой функция определена.

  3. Студент должен знать основные понятия и уметь решать дифференциальные уравнения первого порядка различных типов – неполные, с разделяющимися переменными, однородные и линейные.


Раздел VI. РЯДЫ
Тема 16. Числовые ряды

Понятие числового ряда. Сходимость ряда и его сумма. Свойства сходящихся рядов. Необходимый признак сходимости (доказать). Расходимость гармонического ряда. Достаточные признаки сходимости знакоположительных рядов: признак сравнения, Даламбера. Знакопеременные ряды. Признак Лейбница сходимости знакочередующихся рядов. Абсолютная и условная сходимость. ([1 или 6, § 13.1–13.5]; [2 или 7, § 13.1 – 13.3], или [3, §13.1 – 13.7], или [5, §9.1 – 9.7].

При изучении данной темы студенты знакомятся с новой формой изучения числовой последовательности. Следует уяснить, что обозначение , или u1 + u2 + …+ un + …, – символ, который не следует смешивать с обычной (конечной) суммой. Сумма и сходимость ряда определяется через предельный переход. При рассмотрении ряда могут решаться задачи: определение его суммы и исследование сходимости. Решение первой задачи «перекрывает» и вторую, но это не всегда возможно или вызывает значительные трудности. Решение второй задачи не менее важно, так как в случае, если ряд сходится, его сумма существует и ее можно найти приближенно с любой степенью точности, взяв сумму достаточного числа его первых членов.

Нужно уяснить, что необходимый признак сходимости (для сходящихся рядов при ) не является достаточным, но из необходимого признака сходимости следует, что если предел общего члена , то ряд расходится. Поэтому исследование сходимости числового ряда рекомендуется начинать с вычисления предела его общего члена (если он находится не очень сложно). Если предел окажется равным нулю, то это означает, что ряд может сходиться. Чтобы установить, сходится ли ряд, далее применяют достаточные признаки сходимости.

Применяя признаки сравнения, можно использовать в качестве «эталонных» следующие ряды:



  1. геометрический ряд – сходится при |q|<1, расходится при

  2. гармонический ряд – расходится;

  3. обобщенный гармонический ряд – сходится при расходится при

К признаку сравнения обращаются тогда, когда признак Даламбера показывает, что . Во всех этих случаях применения достаточных признаков сходимости речь идет об исследовании рядов с положительными членами.

Говоря о сходимости знакочередующихся рядов, следует иметь в виду два типа сходимости: абсолютную и условную. Важность этих понятий связана с тем, что абсолютно сходящиеся ряды обладают некоторыми свойствами конечных сумм в отличие от условно сходящихся рядов. Решать вопрос о сходимости знакочередующегося ряда рекомендуем в таком порядке.

1. Составить ряд из абсолютных величин членов данного знакочередующегося ряда.

2. Исследовать сходимость полученного ряда. Может оказаться, что этот ряд сходится. Тогда исходный ряд также сходится, и притом абсолютно. Задача решена.

Если же составленный ряд расходится, то в этом случае о сходимости или расходимости исходного ряда сделать вывод нельзя; необходимо выполнить пункт 3.

3. Исследовать условную сходимость исходного знакочередующегося ряда, например, по признаку Лейбница.





Каталог: chair
chair -> Рабочая программа учебной дисциплины «медицинская реабилитация» цикла Медицинская реабилитация для специальности 310501 «Лечебное дело» по специализации 310501 «Лечебное дело»
chair -> Учебное пособие для самостоятельной подготовки студентов специальной медицинской группы по освоению теоретического раздела дисциплины «Физическая культура»
chair -> Основы оздоровительной физической культуры
chair -> Пояснительная записка 5 Цели и задачи освоения дисциплины
chair -> 1. Цели и задачи освоения учебной дисциплины Цели и задачи изучения дисциплины
chair -> Темы рефератов по патофизиологии
chair -> Методические разработки к практическим занятиям по иммунологии для студентов лечебного и педиатрического факультетов
chair -> Рабочая программа «факультетская терапия. Профессиональные болезни»


Поделитесь с Вашими друзьями:
1   2   3   4   5   6


База данных защищена авторским правом ©zodorov.ru 2017
обратиться к администрации

    Главная страница